检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王军[1,2] 葛宝康 程勇 WANG Jun;GE Bao-Kang;CHENG Yong(School of Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;Science and Technology Industry Division,Nanjing University of Information Science and Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学软件学院,南京210044 [2]南京信息工程大学科技产业处,南京210044
出 处:《计算机系统应用》2023年第12期243-252,共10页Computer Systems & Applications
基 金:国家自然科学基金(41875184,41975183)。
摘 要:针对交通信号灯检测中目标尺度小、检测精度低的问题,提出一种改进YOLOv5s的交通信号灯检测算法.首先,构建一种特征金字塔模块RSN-BiFPN,充分融合不同尺度的交通信号灯特征,以减少目标漏检和误检.其次,引入新的特征融合层和预测头,提高网络对小目标的感知性能,增强检测准确性;最后,采用EIoU函数优化损失,加快网络收敛速度.通过在S2TLD公开数据集上进行的大量的实验结果表明,本文所提方法相较于基础网络,精确率提升4.1%,达96.1%;召回率提升3%,达95.9%;平均精确度提升1.9%,达96.5%.同时,改进后的算法实现了更快的检测速度,达每秒22.7帧,本文方法有效实现交通信号灯快速、准确地检测,可广泛应用于交通道路中信号灯分析相关研究.Aiming at the small target scale and low detection accuracy in traffic signal detection,this study proposes a traffic signal detection algorithm based on improved YOLOv5s.Firstly,a feature pyramid module RSN-BiFPN is constructed to fully integrate traffic signal features of different scales to reduce target missed detection and false detection.Secondly,a new feature fusion layer and prediction head are introduced to improve the perception performance of the network for small objects and enhance detection accuracy.Finally,the EIoU function is adopted to optimize the loss and accelerate network convergence.Experiments conducted on the public dataset S2TLD show that compared with the basic network,the precision rate of the proposed method is increased by 4.1%at 96.1%,the recall rate is 95.9%with an increase of 3%,and the average precision is increased by 1.9%,reaching 96.5%.Meanwhile,the improved algorithm achieves a faster detection speed of 22.7 frames per second.The proposed method can realize rapid and accurate detection of traffic lights and can be widely employed in the research on analyzing traffic lights.
关 键 词:交通信号灯检测 YOLOv5s 小目标 特征金字塔 EIoU损失函数
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程] U491.54[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28