车辆视图大数据深度联网应用平台技术方案  

Technical Solution for Vehicle View Big Data Deep Networking Application Platform

在线阅读下载全文

作  者:唐玮 英璐 冯今昭 TANG Wei;YING Lu;FENG Jinzhao(Shenyang Institute of Science and Technology,Shenyang 110167,China)

机构地区:[1]沈阳科技学院,沈阳110167

出  处:《移动信息》2023年第11期202-205,共4页MOBILE INFORMATION

基  金:沈阳科技学院:《车辆视图大数据深度联网应用平台技术方案》(MS-2023-04)。

摘  要:车景大数据深度网络应用平台是根据位于不同位置卡口系统的业务需求开发的,其具有快速搜索、轨迹跟踪和结构化特征提取等功能。车辆视图大数据深度联网应用平台提供了大量的应用模块,可以有效提高车祸的检出率,减少车祸的发生。该平台顺应了当前的卡口建设趋势,采用先进技术弥补了卡口数据处理的不足,解决了当前业务需求面临的问题。通过分析可以发现,其能很好地整合现有资源,以深入调查过往车辆数据为主线,从民警角度提升警务安全防控能力。在落地方案和应用场景中,该平台采用高效、经济、稳定的部署方式,可以在不改变原有前端设备的情况下,实现人、车、物的连接与分析,最终服务警用实战,为视频的深度应用奠定良好的技术基础,具有广泛的应用前景。The car view big data deep network application platform is developed according to the business requirements of bayo-net systems located in different locations.It has functions such as fast search,trajectory tracking and structured feature extraction.The vehicle view big data deep networking application platform provides a large number of application modules,which can effectively improve the detection rate of car accidents and reduce the occurrence of car accidents.The platform conforms to the current trend of bayonet construction,adopts advanced technology to make up for the shortcomings of bayonet data processing,and solves the problems faced by current business needs.Through analysis,it can be found that it integrates existing resources well,takes in-depth investigation of past vehicle data as the main line,and improwes police security prevention and control capa-bilities from the perspective of police.In the implementation plan and application scenarios,the platform adopts an fficient,eco-nomical and stable deployment method,which can realize the connection and analysis of people,vehicles and objects without changing the original front-end equipment,and finally serve police actual combat.It has laid a good technical foundation for the in-depth application of video and has broad application prospects.

关 键 词:车辆视图 公安部门 大数据 车辆监控 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象