检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕达天[1] 张雪[1] 米艳霖 孔婧媛 Bi Datian;Zhang Xue;Mi Yanlin;Kong Jingyuan(School of Business and Management,Jilin University)
出 处:《图书情报工作》2023年第21期100-110,共11页Library and Information Service
基 金:国家社会科学基金项目“基于用户跨社交媒体的信息行为偏好特征挖掘与推荐研究”(项目编号:21BTQ059)研究成果之一。
摘 要:[目的/意义]旨在从算法感知的视角出发,探明用户对跨平台信息推荐接受意愿的成因与作用机制,为解决用户与智能算法交互领域的问题提供理论参考。[方法/过程]从感知公平性、感知可问责性和感知透明度3方面阐释用户对跨平台信息推荐的算法感知内涵,基于启发式—系统式模型框架,探究不同维度的算法感知对用户接受意愿的差异化影响及其作用机制,采用结构方程建模进行实证研究。[结果/结论]感知公平性、感知可问责性和感知透明度可以显著降低用户的隐私关注,进而提升用户对跨平台信息推荐的接受意愿,感知可问责性对隐私关注产生的负向影响最大;感知公平性和感知可问责性还可以增强用户的社会临场感,社会临场感对用户的推荐接受意愿具有正向影响。根据研究结论,为在线平台企业更好地实施跨平台信息推荐策略,以及互联网信息管理机构进一步完善推荐算法治理模式提供对策与建议。[Purpose/Rignificance]This paper aims to explore the causes and mechanisms of users’willingness to accept cross-platform information recommendation from the perspective of algorithmic perception,providing theoretical reference for resolving issues in the field of interaction between users and intelligent algorithms.[Method/Process]The connotation of users’perception of cross-platform information recommendation algorithm is explained from three aspects:perceived fairness,perceived accountability,and perceived transparency.Based on the heuristic-systematic model framework,it explores the differential impacts and mechanisms of algorithm perception on recommendation acceptance intention in different dimensions,and employing structural equation modeling for empirical research.[Result/Conclusion]Perceived fairness,perceived accountability and perceived transparency can significantly reduce users’privacy concerns,and thus improve users’willingness to accept cross-platform information recommendation.Perceived accountability has the greatest negative impact on privacy concerns.Perceived fairness and perceived accountability can also enhance users’social presence,which has a positive impact on users’willingness to accept recommendations.According to the research conclusions,this paper provides countermeasures and suggestions for online platform enterprises to better implement cross-platform information recommendation strategies,and for Internet information management institutions to further improve the governance models of recommendation algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.39.45