检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊欣[1] XIONG Xin(Henan Engineering College,Zhengzhou 451191,China)
机构地区:[1]河南工程学院,河南郑州451191
出 处:《中国高新科技》2023年第22期134-135,138,共3页
基 金:河南省高等学校重点科研项目(22B51003)。
摘 要:在计算机视觉中,人脸特征检测是一个非常关键的问题,是进行人脸识别、人脸跟踪和表情识别等的基础。在许多专业领域,如人机互动、军用分析等,都有很大的发展空间。脸部特征量侦测的目的在于迅速且精确地从脸部影像中找出脸部特征量(例如:眉毛,眼睛,鼻子,口部等)的定位,为进一步了解面孔信息提供依据。近几年,随着物联网技术的迅速发展和国际学者们对面部识别问题的不断探索,面部识别问题已经有了很大程度的进展。然而,因为面部图像的复杂性和面部姿势的多样化特征,使得面部特征检测在实时性、准确性方面仍有很大的提升空间。文章主要对一种应用随机森林进行面部特征提取的算法进行讨论和总结。In computer vision,facial feature detection is a crucial issue,which is the foundation for facial recognition,facial tracking,and expression recognition.In many professional fields,such as human-computer interaction and military analysis,there is great room for development.The purpose of facial feature detection is to quickly and accurately locate facial features(such as eyebrows,eyes,nose,mouth,etc.)from facial images,providing a foundation for further understanding facial information.In recent years,with the rapid development of the Internet of Things technology and the continuous exploration of facial recognition problems by international scholars,the problem of facial recognition has made significant progress.However,due to the complexity of facial images and the diverse features of facial poses,there is still great room for improvement in real-time and accuracy of facial feature detection.This paper mainly discusses and summarizes an algorithm of facial feature extraction using random forest.
关 键 词:随机森林 SO-RF 人脸特征检测 姿态估计 部分遮挡
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8