Bilinear forms with trace functions over arbitrary sets and applications to Sato-Tate  被引量:1

在线阅读下载全文

作  者:Ping Xi 

机构地区:[1]School of Mathematics and Statistics,Xi'an Jiaotong University,Xi'an 710049,China

出  处:《Science China Mathematics》2023年第12期2819-2834,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos. 12025106 and 11971370)。

摘  要:We prove non-trivial upper bounds for general bilinear forms with trace functions of bountiful sheaves,where the supports of two variables can be arbitrary subsets in F_(p) of suitable sizes.This essentially recovers the Polya-Vinogradov range,and also applies to symmetric powers of Kloosterman sums and Frobenius traces of elliptic curves.In the case of hyper-Kloosterman sums,we can beat the Pólya-Vinogradov barrier by combining additive combinatorics with a deep result of Kowalski,Michel and Sawin(2017) on sum-products of Kloosterman sheaves.Two Sato-Tate distributions of Kloosterman sums and Frobenius traces of elliptic curves in sparse families are also concluded.

关 键 词:bilinear forms l-adic sheaves Riemann Hypothesis over finite fields Sato-Tate distribution Kloosterman sums elliptic curves 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象