检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qiang GUO Long TENG Tianxiang YIN Yunfei GUO Xinliang WU Wenming SONG
机构地区:[1]College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China [2]China National Aeronautical Radio Electronics Research Institute,Shanghai 200233,China [3]College of Automation,Hangzhou Dianzi University,Hangzhou 310018,China
出 处:《Frontiers of Information Technology & Electronic Engineering》2023年第11期1647-1656,共10页信息与电子工程前沿(英文版)
基 金:Project supported by the Technology Foundation for Basic Enhancement Plan,China (No.2021-JCJQ-JJ-0301);the National Major Research and Development Project of China (No.2018YFE0206500);the National Natural Science Foundation of China (No.62071140);the National Special for International Scientific and Technological Cooperation of China (No.2015DFR10220)。
摘 要:The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.
关 键 词:Target tracking Gaussian process DATA-DRIVEN Online learning Model-driven Probabilistic data association
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117