基于新冠病毒群体免疫算法的有源配电网优化调度  被引量:2

Optimized scheduling of Distribution Network with Distributed Generation Based on Coronavirus Herd Immunity Optimizer Algorithm

在线阅读下载全文

作  者:武晓朦[1] 袁榕泽 李英量 朱琦 Wu Xiaomeng;Yuan Rongze;Li Yingliang;Zhu Qi(School of Electronic Engineering,Xi'an Shiyou University,Xi'an 710065,China;AVIC Shaanxi Aero Electric Co.,Ltd,Xi'an 710065,China)

机构地区:[1]西安石油大学电子工程学院,陕西西安710065 [2]陕西航空电气有限责任公司,陕西西安710065

出  处:《系统仿真学报》2023年第12期2692-2702,共11页Journal of System Simulation

基  金:陕西省自然科学基础研究计划(2021JM-404);陕西省教育厅科研计划(21JK0843)。

摘  要:分布式新能源大规模入网的背景下,配电网不确定性因素显著增加,对其进行无功优化调度难度也相应增大,传统的优化方案存在较多限制与不足。提出一种基于多场景法的有源配电网动态无功优化方案。针对新能源和负荷的不确定性分别进行数学建模,并采用多场景方法将不确定性问题转化为确定性问题求解;于配网侧构建了追求网损与无功补偿设备调节代价费用期望值达到综合最优的数学模型,并采用新冠病毒群体免疫算法求解。结果表明:该算法取得的优化方案可有效节约配网运行成本、降低网损。Following the large-scale entry of distributed new energy into the network,the uncertainty factor of the distribution network increases significantly,and the difficulty of reactive power optimization scheduling increases accordingly.Traditional optimization solutions have many limitations and shortcomings,and a dynamic reactive power optimization scheme for active distribution networks based on a multi-scenario approach is proposed.The mathematical modeling is carried out separately for the uncertainty of new energy and load,and the multi-scenario method is used to transform the uncertainty problem into a deterministic problem.A mathematical model is constructed on the distribution network side to pursue the integrated optimal value of the expected cost of network loss and reactive power compensation equipment regulation,and the coronavirus herd immunity optimizer is used to solve it.The results show that the optimization scheme obtained from the algorithm can effectively save the distribution network operation cost and reduce the network loss.

关 键 词:配电网 新冠病毒群体免疫算法 无功优化 电力系统仿真 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象