检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:盛文娟 钟处宁 彭刚定[2] Sheng Wenjuan;Zhong Chuning;Peng Gangding(School of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China;School of Electrical Engineering and Telecommunications,University of New South Wales,Sydney 2052,New South Wales,Australia)
机构地区:[1]上海电力大学自动化工程学院,上海200090 [2]新南威尔士大学电气工程与电信学院,澳大利亚新南威尔士州悉尼2052
出 处:《光学学报》2023年第21期25-32,共8页Acta Optica Sinica
基 金:国家自然科学基金(61905139);国家自然科学基金重点项目(61935002)。
摘 要:首先,充分考虑温漂序列数据前后之间的强相关性,在对光纤法布里-珀罗可调滤波器(FFP-TF)的温漂进行建模的过程中引入时间权重的概念,为每个样本赋予不同的时间属性。然后,采用支持向量机(SVM)作为弱学习器对温漂样本进行建模,使用AdaBoost框架对多个SVM模型进行集成学习。在集成预测过程中,不仅每个模型的预测性能会影响样本的权重分配,而且样本的时间属性也会影响样本权重的更新。实验结果表明:在2℃的窄范围缓慢变温环境中,传统AdaBoost-SVM算法的最大温漂补偿误差为10.83 pm,而基于时间权重的AdaBoost-SVM的最大温漂补偿误差降低到7.04 pm;在15℃的温度范围下,传统AdaBoost-SVM算法的最大误差达到11.57 pm,基于时间权重的AdaBoost-SVM的最大误差仅为4.05 pm。与传统硬件方法相比,所提出的方法不需要额外硬件,为可调谐滤波器的温漂补偿提供了一种新的思路。Objective Fiber Fabry-Perot tunable filters(FFP-TF)controlled by piezoelectric ceramics are prone to temperature drift in fiber Bragg grating(FBG)sensing systems.During the long-term measurement process,FFP-TF will cause continuous drift of the output wavelength,which will adversely damage the FBG sensing system's measurement accuracy.At the moment,FFP-TF temperature drift compensation primarily entails adding hardware calibration modules to the FBG sensing system,such as the reference grating method,F-P etalon method,gas absorption method,and composite wavelength reference method.Although these technologies can efficiently adjust for temperature drift,they greatly increase the system's cost and complexity.As a result,utilizing software approaches to compensate for temperature drift in FFP-TF is a practical and low-cost method.However,most contemporary temperature drift compensation approaches based on artificial intelligence technologies neglect temperature drift data's temporal features.In fact,the fresh sample has a higher impact on the prediction outcomes of the following data than the old sample.As a result,this work extensively addresses the impact of temporal features on temperature drift compensation when processing temperature drift and other highly time-dependent data.A tunable filter temperature drift compensation approach with time weight is suggested based on the AdaBoost-SVM algorithm and time weight.Methods We use FBG0 as the reference grating and the other three FBGs as sensing gratings,and each sensing grating is modeled individually.The temperature-related values of the experimental environment are chosen as the model's input features in this investigation.Furthermore,because the wavelength drift errors of each FBG in the FFP-TF output spectrum have a high correlation,we use the drift of the reference grating as an input feature of the dynamic compensation model to compensate for the lack of accurate temperature information in the F-P cavity.The significant link between the temperature drift seq
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.21.242