基于微纳光纤的柔性仿生微结构触觉传感器研究  被引量:2

Flexible Bionic Microstructure Tactile Sensor Based on Micro-Nano Optical Fiber

在线阅读下载全文

作  者:范成磊 罗彬彬[1] 吴德操 邹雪[1,2] 饶洪承 周富民 黄玲 石胜辉[1] 胡新宇[1] Fan Chenglei;Luo Binbin;Wu Decao;Zou Xue;Rao Hongcheng;Zhou Fumin;Huang Ling;Shi Shenghui;Hu Xinyu(Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection,Chongqing University of Technology,Chongqing 400054,China;School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆理工大学光纤传感与光电检测重庆市重点实验室,重庆400054 [2]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《光学学报》2023年第21期59-69,共11页Acta Optica Sinica

基  金:重庆英才青年拔尖人才计划(cstc2021ycjh-bgzxm0128);重庆市教育委员会科学技术重点研究项目(KJZDK202201106);重庆理工大学科研创新团队培育计划项目(2023TDZ002);重庆研究生创新项目(CYS23665)。

摘  要:人类指尖的指纹图案以及互锁的表皮-真皮微结构在放大触觉信号并将其传递给各种机械感受器方面发挥着关键作用,从而实现对各种静态和动态触觉信号的时空感知。本文报道了一种受指尖皮肤微结构启发的微纳光纤柔性触觉传感器,该传感器具有环形脊的指纹状表面、错峰互锁的微结构以及刚度差异化的树脂/聚二甲基硅氧烷多层结构。通过这些设计特征,传感器能够以高耐久性、高灵敏度(20.58%N^(-1))、快速响应(86 ms)及大动态范围(0~16 N)检测多种时空触觉刺激,包括静态、动态压力和振动,并能够识别物体的硬度和表面纹理差异。该传感器具有结构紧凑、制作简便、易集成、抗电磁干扰等优点,可被应用于机器人皮肤、可穿戴传感器和医疗诊断设备中。Objective The rapid evolution of bionic flexible tactile sensors is driven by the overarching goal of emulating human tactile perception to augment robots'perceptual acuity.Conventional electric sensing paradigms grapple with a myriad of challenges,including elevated manufacturing costs and susceptibility to signal interference.Meanwhile,due to the small size,strong flexibility,and high sensitivity,optical sensing modalities are pushing micro/nano fibers(MNFs)into the spotlight.Domestically,the Zhejiang Lab is at the forefront of developing various MNF-based sensors,enabling single/dual-modal detection for applications in human-machine interaction and physiological parameter monitoring.Nevertheless,the challenge of balancing sensitivity and operational range remains unresolved in current methods,compounded by susceptibility to wear-related issues.Thus,we introduce a micro/nano fiber-based flexible tactile sensor unit inspired by fingertip skin microstructures(FIMF).By simulating the biological microstructures and tactile conduction mechanisms of fingertip skin,FIMF achieves the detection of mechanical stimuli and object feature recognition.The advanced sensor structure and functional attributes are significant for applications in flexible bionic devices and advanced robotics technology.Methods Firstly,the proposed flexible tactile sensing unit FIMF is inspired by the microstructure of fingertip skin and is achieved by embedding an MNF between two layers of polydimethylsiloxane(PDMS)films.The structure is further enhanced by introducing two layers of elastic resin annular ridges on the surface,each with varying stiffness.This design aims to replicate the intricate microstructure of biological fingertip skin and its underlying tactile conduction mechanism.Subsequently,we delve into the influence of PDMS film thickness and the dimensions of the annular ridges on the tactile pressure response of the FIMF sensor.Based on meticulous simulation results,the optimal sensor parameters are identified with a PDMS film thickn

关 键 词:光纤传感器 微纳光纤 仿生触觉 压力 皮肤指纹微结构 

分 类 号:TN253[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象