基于系统聚类k次平均算法的航班燃油告警研究  

Research on Flight Fuel Warning Based on System Clustering K-means Algorithm

在线阅读下载全文

作  者:刘政[1] 刘建军[1] 施光阳 LIU Zheng;LIU Jianjun;SHI Guangyang(China Southern Airlines,Guangzhou 510000,Guangdong,China)

机构地区:[1]中国南方航空股份有限公司,广东广州510000

出  处:《民航学报》2023年第6期5-8,67,共5页Journal of Civil Aviation

摘  要:为确保航空公司航班安全正常运行,准确快速提示燃油告警,为航空公司运控人员处置航班提供可靠依据,减少航班运行低油量事件的发生,本文根据公司航班运行的实际燃油数据,采用系统聚类k次平均算法的方法,结合公司运行实际,识别出实际运行中燃油偏差大于额外燃油量以及预计着陆油量小于60min的航班,产生燃油告警,为运控人员及时干预航班,给出航班处置方案。结果表明,及时的航班燃油告警可以大幅降低航班低燃油量事件量和航班备降率。To ensure safe and normal operation of airline flights,accurately and quickly provide fuel alarms,provide reliable basis for airline operations control personnel to handle flights,and reduce the occurrence of low fuel incidents during flight operations,based on the actual fuel data of the company's flight operations and the actual operation of the company,this article uses the system clustering K-means algorithm method,identifies flights with fuel deviations greater than the additional fuel volume and flights with expected landing fuel volume less than 60 minutes during actual operation,generates fuel alarms,and provides flight disposal plans for operation control personnel.The results indicate that timely flight fuel warning can significantly reduce the number of low fuel incidents and flight diversion rates.

关 键 词:k次平均算法 系统聚类 低燃油量 额外燃油 告警 备降 

分 类 号:U8[交通运输工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象