检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石志良[1] 范伟楠 甘梓博 袁琼 Shi Zhiliang;Fan Weinan;Gan Zibo;Yuan Qiong(School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China;College of Computer,Hubei University of Education,Wuhan 430205,China)
机构地区:[1]武汉理工大学机电工程学院,湖北武汉430070 [2]湖北第二师范学院计算机学院,湖北武汉430205
出 处:《南京师大学报(自然科学版)》2023年第4期91-102,共12页Journal of Nanjing Normal University(Natural Science Edition)
基 金:湖北省重点研发项目(2021BCA106);国家重点研发计划项目(2018YFB1105503).
摘 要:精准的骨组织分割是辅助骨科疾病诊断和手术规划的必要步骤. 由于骨边界模糊、对比度低、骨关节处间隔狭窄,骨组织自动分割一直是医学图像分割中的难题. 传统的图割算法仅基于图像强度特征,在分割骨组织时不但需要人工设置种子点,且存在关节处骨边界分割不清晰等问题. 为此,结合骨边界增强滤波、形态学理论和图割算法,提出一种新的图像分割算法. 以图割算法为框架,基于Hessian矩阵设计增强骨边界的滤波器,将滤波结果转换为约束项加入到图割的能量函数中,求解图割模型获取初步分割结果;基于形态学理论提出对初步结果图进行先腐蚀后简易图割的后处理方法,利用腐蚀图替代人工输入初始化图割模型,实现相邻骨组织的自动分离. 使用内部股骨数据集、癌症影像档案馆(TCIA)公开数据集进行算法验证. 实验结果表明,相比阈值分割、区域生长、传统图割,该算法在Dice、精确度、F1分数等指标上均取得了更好的结果,可作为临床诊断的可靠依据.Accurate bone tissue segmentation is a necessary step to assist orthopedic disease diagnosis and surgical planning.Automatic segmentation of bone tissue has always been a difficult problem in medical image segmentation due to blurred bone boundaries,low contrast,and narrow bone joint interval.The traditional graph-cut algorithm is only based on intensity feature of the image,which not only requires manual setting seed points,but also has some problems such as unclear bone boundary at the joint.Therefore,a new image segmentation algorithm is proposed by combining bone boundary enhancement filtering,morphological theory and graph cut algorithm.Taking the graph-cut algorithm as the framework,bone boundary enhancement filtering is designed based on the Hessian matrix,and the filtering result is converted into a constraint term and added to the energy function of the graph-cut,and the graph-cut model is solved to obtain the preliminary segmentation results.The preliminary result is subjected to a post-processing method of first eroding and then simple graph-cut.The corrosion image is used to replace the manual input to initialize the graph-cut model to realize the automatic separation of adjacent bone tissue.Algorithm validation was performed using an internal femur dataset,the Cancer Image Archive(TCIA)public dataset.The experimental results show that compared with threshold segmentation,region growth,and traditional graph-cut,the algorithm achieves better results in Dice,accuracy,F1 score and other indicators,and can be used as a reliable basis for clinical diagnosis.
关 键 词:骨组织 自动分割 图割 骨边界增强滤波 HESSIAN矩阵
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249