检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张营营 徐浩[1] 陈培见 马俊 周祎 ZHANG Yingying;XU Hao;CHEN Peijian;MA Jun;ZHOU Yi(School of Mechanics and Civil Engineering,China University of Mining and Technology,Xuzhou 221116,Jiangsu,P.R.China;Jiangsu Key Laboratory of Environmental Disaster and Structural Reliability of Civil Engineering,China University of Mining and Technology,Xuzhou 221116,Jiangsu,P.R.China;South Branch of China Construction Eighth Engineering Bureau Co.,Ltd,Shenzhen 518035,Guangdong,P.R.China;College of Civil Engineering,Southwest Jiaotong University,Chendu 610031,P.R.China)
机构地区:[1]中国矿业大学力学与土木工程学院,江苏徐州221116 [2]中国矿业大学江苏省土木工程环境灾变与结构可靠性重点实验室,江苏徐州221116 [3]中国建筑第八工程局有限公司南方分公司,广东深圳518035 [4]西南交通大学土木工程学院,成都610031
出 处:《土木与环境工程学报(中英文)》2024年第1期182-193,共12页Journal of Civil and Environmental Engineering
基 金:国家自然科学基金(52278229)。
摘 要:目前,针对高强钢构件整体稳定性的研究多采用有限元建模或实验室试验方法,而基于机器学习的预测方法能够显著提升预测的准确性和便捷性。为了准确预测高强钢焊接等截面箱型柱的整体稳定性,提出使用纤维模型构建数据库并利用机器学习建立预测模型的方法。首先确定模型的输入输出参数,并通过纤维模型方法建立数据库;接着,选用常见的3种不同类型的机器学习模型和现有规范中的经验模型进行预测,并依据评价指标进行性能对比;最后,根据可解释算法分析机器学习模型的合理性。结果表明:大部分机器学习模型预测结果与试验结果吻合度略高于现有规范中的经验模型,其中,高斯过程回归模型对高强钢构件整体稳定性的预测表现最优;机器学习预测模型中各类参数对构件整体稳定性的影响趋势符合预期,验证了机器学习模型的合理性和可靠性;构件的正则化长细比对预测结果影响最大,而构件初始缺陷的影响相对最小。At present,finite element modeling or laboratory testing methods are generally used in the research of the overall stability of high-strength steel members.However,the prediction method based on machine learning(ML)has greatly improved the accuracy and convenience of component performance prediction.To accurately predict the overall stability of welded constant section box columns made of high strength steel,ML method together with a database based on the fiber model is proposed in this paper.Firstly,the input and output parameters of the model are determined,and the database is provided.Then,three different ML models and empirical models in the existing specifications are selected for prediction,and the performance is compared according to the evaluation index.Finally,the rationality of ML models is analyzed according to interpretable algorithms.The results show that the prediction results of most ML models are in good agreement with the experimental results,which are slightly higher than the empirical models,and the Gaussian process regression model has the best prediction performance for the overall stability of high-strength steel members;the influential trend of various parameters on the overall stability of components meets the expectation,which verifies the rationality and reliability of the ML model;the regularized slenderness ratio has the greatest influence on the prediction results,while the initial defects have the least.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7