施工场景下灰色小波神经网络短时交通量预测模型研究  

Research on short time traffic prediction model of grey wavelet neural network in urban road construction scenarios

在线阅读下载全文

作  者:孙瑶 李挥剑[1] 钱哨[1] Sun Yao;Li Huijian;Qian Shao(Transport Management Institute Ministry of Transport of the P.R.,Beijing 101601,China)

机构地区:[1]交通运输部管理干部学院,北京101601

出  处:《青海交通科技》2023年第1期25-30,共6页Qinghai Transportation Science and Technology

摘  要:在城市道路施工场景下应用短时交通量预测对提高施工区域交通效率及安全水平至关重要。考虑到施工场景下短时交通量历史样本量小且样本呈现非线性的特点,引入灰色预测模型,构建施工场景下的灰色小波神经网络短时交通量预测模型。以行宫西大街由西向东断面的交通量数据为例,分别基于小波神经网络短时交通量预测模型、灰色小波神经网络短时交通量预测模型,利用Matlab进行训练。结果显示,灰色小波神经网络短时交通量预测结果的平均绝对误差、平均相对误差和均方误差相较于小波神经网络短时交通量预测模型,分别降低了74.14%、75.21%和92.70%,该模型对城市道路施工场景下的短时交通量预测精确度更高。The application of short-term traffic volume prediction in urban road construction scenarios is very important to improve the traffic efficiency and safety level of construction area.Considering the small historical sample size and the nonlinear characteristics of the sample,this paper introduces the grey prediction model to build the short-term traffic volume prediction model of grey wavelet neural network under the construction scenarios.Taking the traffic volume data of the west to east section of Xinggong West Street as an example,the short-term traffic volume prediction model of wavelet neural network and the short-term traffic volume prediction model of grey wavelet neural network were respectively trained based on Matlab.The experimental results show that compared with the wavelet neural network short-term traffic volume prediction model,the mean absolute error,mean relative error and mean square error of the short-term traffic volume prediction result of the grey wavelet neural network are reduced by 74.14%,75.21%and 92.70%,respectively.The short-term traffic volume prediction model of grey wavelet neural network is more accurate for the prediction of short-term traffic volume under the urban road construction scenarios.

关 键 词:城市道路 施工场景 短时交通量预测 灰色小波神经网络预测模型 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] U491.14[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象