From unstructured texts to semantic story maps  

在线阅读下载全文

作  者:Valentina Bartalesi Gianpaolo Coro Emanuele Lenzi Pasquale Pagano NicolòPratelli 

机构地区:[1]Istituto di Scienza e Tecnologie dell’Informazione‘A.Faedo’del Consiglio Nazionale delle Ricerche,Pisa,Italy

出  处:《International Journal of Digital Earth》2023年第1期234-250,共17页国际数字地球学报(英文)

基  金:funding from the European Union’s Horizon 2020 research and innovation programme under the MOVING project(grant agreement no 862739).

摘  要:Digital maps greatly support storytelling about territories,especially when enriched with data describing cultural,societal,and ecological aspects,conveying emotional messages that describe the territory as a whole.Story maps are interactive online digital narratives that can describe a territory beyond its map by enriching the map with text,pictures,videos,and other multimedia information.This paper presents a semi-automatic workflow to produce story maps from textual documents containing territory data.An expertfirst assembles one territory-contextual document containing text and images.Then,automatic processes use natural language processing and Wikidata services to(i)extract key concepts(entities)and geospatial coordinates associated with the territory,(ii)assemble a logically-ordered sequence of enriched story-map events,and(iii)openly publish online story maps and an interoperable Linked Open Data semantic knowledge base for event exploration and inter-story correlation analyses.Our workflow uses an Open Science-oriented methodology to publish all processes and data.Through our workflow,we produced story maps for the value chains and territories of 23 rural European areas of 16 countries.Through numerical evaluation,we demonstrated that territory experts considered the story maps effective in describing their territories,and appropriate for communicating with citizens and stakeholders.

关 键 词:Story maps semantic web ontology natural language processing narratives e-infrastructures virtual research environments 

分 类 号:H313[语言文字—英语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象