检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wei Wang Alim Samat Jilili Abuduwaili Philippe De Maeyer Tim Van de Voorde
机构地区:[1]State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi,People’s Republic of China [2]Research Centre for Ecology and Environment of Central Asia,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi,People’s Republic of China [3]University of Chinese Academy of Sciences,Beijing,People’s Republic of China [4]Department of Geography,Ghent University,Ghent,Belgium [5]Sino-Belgian Joint Laboratory of Geo-Information,Ghent,Belgium [6]Sino-Belgian Joint Laboratory of Geo-Information,Urumqi,People’s Republic of China
出 处:《International Journal of Digital Earth》2023年第1期1530-1550,共21页国际数字地球学报(英文)
基 金:supported by the National Natural Science Foundation of China(42171014);the UNEPNSFC International Cooperation Project(42161144004);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20060301);National Natural Science Foundation of China(42071424);the China Scholarship Council(202104910412).
摘 要:With the emergence of multisource data and the development of cloud computing platforms,accurate prediction of event-scale dust source regions based on machine learning(ML)methods should be considered,especially accounting for the temporal variability in sample and predictor variables.Arid Central Asia(ACA)is recognized as one of the world’s primary potential sand and dust storm(SDS)sources.In this study,based on the Google Earth Engine(GEE)platform,four ML methods were used for SDS source prediction in ACA.Fourteen meteorological and terrestrial factors were selected as influencing factors controlling SDS source susceptibility and applied in the modeling process.Generally,the results revealed that the random forest(RF)algorithm performed best,followed by the gradient boosting tree(GBT),maximum entropy(MaxEnt)model and support vector machine(SVM).The Gini impurity index results of the RF model indicated that the wind speed played the most important role in SDS source prediction,followed by the normalized difference vegetation index(NDVI).This study could facilitate the development of programs to reduce SDS risks in arid and semiarid regions,particularly in ACA.
关 键 词:Susceptibility mapping event scale google earth engine(GEE) remote sensing
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145