检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bolin Fu Xidong Sun Yuyang Li Zhinan Lao Tengfang Deng Hongchang He Weiwei Sun Guoqing Zhou
机构地区:[1]College of Geomatics and Geoinformation,Guilin University of Technology,Guilin,China [2]Department of Geography and Spatial Information Techniques,Ningbo University,Ningbo,China
出 处:《International Journal of Digital Earth》2023年第1期2724-2761,共38页国际数字地球学报(英文)
基 金:supported by National Natural Science Foundation of China:[Grant Number 21976043,42122009];Guangxi Science&Technology Program:[Grant Number GuikeAD20159037];‘Ba Gui Scholars’program of the provincial government of Guangxi,and the Guilin University of Technology Foundation:[Grant Number GUTQDJJ2017096];Innovation Project of Guangxi Graduate Education:[Grant Number YCSW2022328].
摘 要:Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communities has faced great challenges because of its coarse spatial resolution and limited spectral bands.This study aimed to propose a method to classify marsh vegetation using multi-resolution multispectral and hyperspectral images,combining super-resolution techniques and a novel self-constructing graph attention neural network(SGA-Net)algorithm.The SGA-Net algorithm includes a decoding layer(SCE-Net)to preciselyfine marsh vegetation classification in Honghe National Nature Reserve,Northeast China.The results indicated that the hyperspectral reconstruction images based on the super-resolution convolutional neural network(SRCNN)obtained higher accuracy with a peak signal-to-noise ratio(PSNR)of 28.87 and structural similarity(SSIM)of 0.76 in spatial quality and root mean squared error(RMSE)of 0.11 and R^(2) of 0.63 in spectral quality.The improvement of classification accuracy(MIoU)by enhanced super-resolution generative adversarial network(ESRGAN)(6.19%)was greater than that of SRCNN(4.33%)and super-resolution generative adversarial network(SRGAN)(3.64%).In most classification schemes,the SGA-Net outperformed DeepLabV3+and SegFormer algorithms for marsh vegetation and achieved the highest F1-score(78.47%).This study demonstrated that collaborative use of super-resolution reconstruction and deep learning is an effective approach for marsh vegetation mapping.
关 键 词:Marsh vegetation classification super-resolution reconstruction SGA-Net and SegFormer multispectral and hyperspectral images spectral restoration spatial resolution improvement
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13