HyperRefiner:a refined hyperspectral pansharpening network based on the autoencoder and self-attention  

在线阅读下载全文

作  者:Bo Zhou Xianfeng Zhang Xiao Chen Miao Ren Ziyuan Feng 

机构地区:[1]Institute of Remote Sensing and Geographic Information System,Peking University,Beiig,People's Republic of China

出  处:《International Journal of Digital Earth》2023年第1期3268-3294,共27页国际数字地球学报(英文)

基  金:supported by the National Natural Science Foundation of China[grant number 42171327];the International Research Center of Big Data for Sustainable Development Goals,China[grant number CBAS2022GSP06].

摘  要:Deep learning has been developed to generate promising super resolution hyperspectral imagery by fusing hyperspectral imagery with the panchromatic band.However,it is still challenging to maintain edge spectral information in the necessary upsampling processes of these approaches,and diffcult to guarantee effective feature extraction.This study proposes a pansharpening network denoted as HyperRefiner that consists of,(1)a well performing upsampling network SRNet,in which the dual attention block and refined attention block are cascaded to accomplish the extraction and fusion of features;(2)a spectral autoencoder that is embedded to perform dimensionality reduction under constrained feature extraction;and(3)the optimization module which performs self-attention at the pixel and feature levels.A comparisonwithseveral state-of-the-art models reveals that HyperRefiner can improve the quality of the fused image.Specifically,compared to the single-head HyperTransformer and with the Chikusei dataset,our network improved the Peak Signal-to-Noise Ratio,Erreur Relative Globale Adimensionnelle de Synthese and Spectral Angle Mapper by 0.86%,3.62%,and 2.09%,and reduce the total memory,floating point operations,model parameters and computation time by 41%,75%,86%and 46%,respectively.The experimental results show that HyperRefiner outperforms several networks and demonstrates its usefulness in hyperspectral image fusion.The code is publicly available athttps://github.com/zsspo/Fusion_HyperRefiner.

关 键 词:Image fusion HYPERSPECTRAL self-attention autoencoder edge spectrum 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象