检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈冠初 阿力马斯别克·沙肯别克 焦春雷[1] 李青[2] 张元赫 CHEN Guanchu;ALIMASIBIEKE·Shakenbieke;JIAO Chunlei;LI Qing;ZHANG Yuanhe(State Grid Xinjiang Electric Power Research Institute,Urumqi 830013,Xinjiang,China;Xinjiang University,Urumqi 830046,Xinjiang,China;Shandong University,Jinan 250061,Shandong,China)
机构地区:[1]国网新疆电力科学研究院,新疆乌鲁木齐830013 [2]新疆大学,新疆乌鲁木齐830046 [3]山东大学,山东济南250061
出 处:《电网与清洁能源》2023年第11期97-104,110,共9页Power System and Clean Energy
基 金:国家重点研发计划资助项目(2019YFE0118400)。
摘 要:随着新能源保供电重要性日渐增强,调度人员对中期风电功率预测的需求程度也进一步加深。针对气象资源时空分布时序差异性波动大以及随着预测前瞻时间的延迟,区域风电功率预测不确定性合理评估难的问题,提出了基于集群划分和LightGBM-KDE的区域风电中期概率预测。首先对空间气象特征参数进行有效识别,并对风电集群出力波动性进行研究,利用减法聚类对风电场集群进行合理划分;然后基于集群划分结果,利用LightGBM算法建立中期风电功率预测模型;最后对功率预测误差采用非参数核密度估计计算概率密度分布,最终建立基于集群划分和LightGBM-KDE的240 h区域风电中期概率预测模型。算例结果表明,所提方法在区域风电中期概率预测中具有更高的精度。With increasing importance of ensuring power supply through new energy resources,the demand for mediumterm wind power prediction by power dispatchers has deepened.Focusing on large fluctuations in temporal and spatial distribution of meteorological resources and the difficulty of reasonably evaluating the uncertainty of regional wind power forecast with the delay of forecast prospect time,this paper proposes a medium-term probabilistic forecast method for regional wind power based on cluster division and LighTBM-KDE.Firstly,the spatial meteorological characteristic parameters are identified effectively,and the output fluctuation of wind power clusters is studied,and the wind power clusters are divided reasonably by subtraction clustering.Secondly,based on the cluster division results,the LightGBM algorithm is used to build a medium-term wind power prediction model.Furthermore,the non-parametric kernel density estimation method is used to calculate the probability density distribution of power prediction errors,and finally a medium term probability prediction model of 240-hour regional wind power based on cluster division and LighGBMKDE is established.The numerical results show that the proposed method has higher precision in the medium-term probabilistic prediction of regional wind power.
关 键 词:集群划分 聚类分析 LightGBM 非参数核密度估计 区域中期概率预测
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117