检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐敬沛 王学民 卿华 何云 XU Jing-pei;WANG Xue-min;QING Hua;HE Yun(AECC Sichuan Gas Turbine Research Establishment,Chengdu 610500,China)
机构地区:[1]中国航发四川燃气涡轮研究院,四川成都610500
出 处:《推进技术》2023年第12期146-154,共9页Journal of Propulsion Technology
基 金:国家科技重大专项(2019-IV-0017-0085)。
摘 要:为了给发动机涡轮盘寿命管理提供有效的数据输入及后续工程应用提供依据,本文基于统计学习和机器学习方法,提出基于降维和随机森林的航空发动机涡轮盘应力预测模型,以发动机可测参数作为初始特征,通过相关性分析、主成分分析与聚类分析,实现了对总体参数样本的降维,并提取出主控因素,再利用随机森林算法建立航空发动机涡轮盘应力预测模型。结果表明:该方法预测精度比未降维的随机森林模型更高,判定系数R2达到0.985以上,证明该方法对航空发动机涡轮盘应力预测是有效的。Based on statistical learning and machine learning methods,an aero-engine turbine disk stress prediction model based on dimension reduction and random forest was proposed to provide effective data input for engine turbine disk life management and provide a basis for subsequent engineering applications.Taking the mea⁃surable engine parameters as the initial characteristics,the dimensionality of the overall parameter samples was reduced through correlation analysis,principle component analysis and cluster analysis,and the main control factors were extracted.The random forest algorithm was used to establish the aero-engine turbine disk stress pre⁃diction model.The results show that the prediction accuracy of this method is higher than that of the random forest model without dimensional-reduction,and the determination coefficient is above 0.985,which proves that this method is effective for the prediction of turbine disk stress of aero-engine,and has great significance for the tech⁃nical support of aero-engine life management.
分 类 号:V232.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147