城市居民出行碳排放模型构建及其应用  被引量:4

Construction and Application of Urban Residents Travel Carbon Emission Model

在线阅读下载全文

作  者:何榕健 陈立峰 何建文 王楠 李尧 张紫琪 许志楠 邹亚娜 李乐溢 王祥荣[2] HE Rongjian;CHEN Lifeng;HE Jianwen;WANG Nan;LI Yao;ZHANG Ziqi;XU Zhinan;ZOU Ya na;LI Leyi;WANG Xiangrong(China Mobile Information Technology Co.,Ltd,Beijing 102211,China;Department of Environmental Science and Engineering,Fudan University,Shanghai 200433,China)

机构地区:[1]中移动信息技术有限公司,北京102211 [2]复旦大学环境科学与工程系,上海200433

出  处:《复旦学报(自然科学版)》2023年第6期796-806,共11页Journal of Fudan University:Natural Science

基  金:中国移动通信集团有限公司2021年—2022年高校合作科研项目(R2210967)。

摘  要:根据便携式通讯设备在不同的基站上逐时记录的数据,可推算居民的出行时间、距离和速度,在核算居民出行碳排放方面有突出优势。本研究对我国某城市便携式通讯设备的轨迹序列进行30天连续采样,以此提取出行距离、出行时长以及出行方式数据并形成142877条匿名的有效出行轨迹序列,然后分别构建了基于小汽车动力类型的碳排放核算模型和基于特征时间区间的公共交通碳排放核算模型,最终与步行和骑行出行对比,得到城市居民出行碳排放模型与特征。结果表明,公交车、小汽车和地铁累计产生了出行碳排放33264494.0 g,分别贡献了97.63%、2.09%和0.28%,且单月累计碳排放的最大平均人数区间分别为13.0 g至12715.0 g、40.0 g至579.0 g和20.0 g至38.0 g。本研究还模拟了不同的碳减排场景,其中小汽车出行和公交车出行碳排放削减量分别可以达到51.94%和70.83%。本模型能够快速精准地监测和模拟城市居民出行碳排放,具有实时性、完整性、出行时空全覆盖性的特征,体现了积极的社会意义与生态效应。Portable communication equipment is recorded on different base stations,which can calculate the travel time,distance and speed,and has outstanding advantages in calculating the carbon emissions of residents.In this study,the track sequence of portable communication equipment in a Chinese city was continuously sampled for 30 days to extract travel distance,travel duration and travel mode and form 142877 anonymous effective track sequences.Then,the carbon emission accounting model based on car power type and the carbon emission accounting model based on characteristic time interval of public transportation were constructed respectively.Finally,compared with walking and cycling,the carbon emission model and characteristics of urban residents travel are obtained.The results showed that buses,cars and subways produced 33264494.0 g of travel carbon emissions,contributing 97.63%,2.09%and 0.28%,respectively.The maximum average number of cumulative carbon emissions in a single month ranges from 13.0 g to 12715.0 g,40.0 g to 579.0 g and 20.0 g to 38.0 g,respectively.This study also simulated different carbon emission reduction scenarios,in which reduction in carbon emissions from car and bus travel reached 51.94%and 70.83%,respectively.This model can quickly and accurately monitor and simulate urban residents travel carbon emissions,and has the characteristics of real-time,integrity,and full coverage of travel time and space,reflecting positive social significance and ecological effects.

关 键 词:出行大数据 轨迹序列 碳排放 居民出行 公共交通 碳减排情景 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象