检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江明会 梅益[1] 罗彦英 余书发 胡大兵 Jiang Minghui;Mei Yi;Luo Yanying;Yu Shufa;Hu Dabing(College of Mechanical Engineering,Guizhou University,Guiyang 550025,China;Guizhou Huayun Automobile Trim Manufacturing Co.,Ltd.,Guiyang 550025,China;Zunyi Jingxing Aerospace Electric Co.,Ltd.,Zunyi 563125,China)
机构地区:[1]贵州大学机械工程学院,贵阳550025 [2]贵州华云汽车饰件制造有限公司,贵阳550025 [3]遵义精星航天电器有限责任公司,贵州遵义563125
出 处:《工程塑料应用》2023年第12期92-99,共8页Engineering Plastics Application
基 金:贵阳科技计划项目(筑科合同[2022]5-38)。
摘 要:针对现有聚氨酯发泡机混合头混合均匀度差的问题,在某公司现有混合头结构的基础上,对该混合头进行结构参数优化。首先,设计正交试验,对该混合头进行流场分析,将得到的仿真试验数据进行极差分析,得到该混合头的结构参数对混合指数的影响顺序。其次,采用遗传算法(GA)优化BP神经网路后,得到训练好的GA-BP预测模型,用于预测该混合头的混合指数,拟合出混合头的5个结构参数与混合指数之间的映射关系,通过对比分析BP与GA-BP网络预测模型可知,BP网络模型的回归值R为0.5646,而GA⁃BP网络模型的R为0.9903,GA-BP网络预测系统与直接使用BP网络预测系统相比,有较高的预测准确性及稳定性。最后,采用GA对GA-BP网络预测模型进行全局极值寻优,得到较优的结构参数。GA-BP-GA优化后的混合指数与初始方案的混合指数相比,降低了52%,在一定程度上降低了该混合头混合指数,提高了该混合头的混合效果,通过对比Matlab中GA-BP-GA预测的混合效果0.1653 mm与Fluent仿真所得值0.165 mm,发现两者相对误差为0.18%,验证了该优化方法的可行性。In order to solve the problem of poor mixing uniformity of the existing polyurethane foaming machine mixing head,the structural parameters of the mixing head were optimized based on the structure of the existing mixing head of a certain company.First,an orthogonal test was designed to conduct flow field analysis on the mixing head.The simulation test data would be obtained for range analysis to obtain the order in which the structural parameters of the mixing head affect the mixing index.Secondly,after using the genetic algorithm(GA)to optimize the BP neural network,the trained GA-BP prediction model was obtained,which was used to predict the mixing index of the mixing head and fitted the mapping relationship between the five structural parameters of the mixing head and the mixing index,through comparative analysis of the BP and GA-BP network prediction models,it can be seen that the R of the BP network model is 0.5646,while the R of the GA⁃BP network model is 0.9903.Compared with the direct use of the BP network prediction system,the GA-BP network prediction system has Higher prediction accuracy and stability.Finally,GA was used to perform global extreme value optimization on the GA-BP network prediction model to obtain better structural parameters.Compared with the mixing index of the initial scheme,the optimized mixing index of GA-BP-GA is reduced by 52%,which reduces the mixing index of the mixing head to a certain extent and improves the mixing effect of the mixing head.By comparing the GA in Matlab,the mixing effect predicted by GA-BP-GA is 0.1653 mm and the value obtained by Fluent simulation is 0.165 mm.The relative error between the two is 0.18%,which verifies the feasibility of the optimization method.
分 类 号:TQ315[化学工程—高聚物工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30