基于单源分段编码的无线对等感知网数据收集模型  

Data Collection Model of Wireless Peer-to-Peer Sensing Network based on Single Source Segmented Coding

在线阅读下载全文

作  者:尹子铭 袁松 YIN Ziming;YUAN Song(Xuzhou No.1 Peoples's Hospital,Xuzhou 221000,China;Information Engineering College,Hangzhou Dianzi University,Hangzhou 310018,China)

机构地区:[1]徐州市第一人民医院,江苏徐州1221000 [2]杭州电子科技大学电子信息学院,杭州310018

出  处:《计算机测量与控制》2023年第12期195-202,共8页Computer Measurement &Control

基  金:浙江省重点研发计划项目(2020A01009)。

摘  要:针对触发型数据场景下大规模无线对等感知网络的部分数据收集问题,提出一种基于单源分段编码的数据收集模型;利用单个源节点的多个分段之间编码而成的数据来记录源数据,提高数据可靠性的同时使其适应大规模网络下的部分数据收集;通过使用游走包进行编码操作,避免源节点过多的能量消耗;同时针对节点存储空间提出动态划分编码单元策略,利用邻居间的信息交换动态调整源数据切分的编码单元大小,实现节点存储空间与收集效率的动态调整;并针对灾难场景下的数据收集提出了危险感知编码冗余量动态调整策略,通过对邻居状态的感知动态调整发送随机游走包的个数,自适应地提升编码冗余量,提高数据恢复率。Aiming at the problem of partial data collection in large-scale wireless peer-to-peer awareness networks in trigger data scenario,a data collection model based on single source segmented coding model(SSSCM)is proposed.The data encoded between multiple segments of a single source node is used to record the source data,which improves the reliability of the data and makes it suitable for partial data collection under large-scale networks.The random walk coding packets are used to perform the encoding oper-ations to avoid the excessive energy consumption of the source node.At the same time,the dynamic segmentation of coding units(DSCU)is proposed,using the information exchange to dynamically adjust the size of the coding unit,and achieve the dynamic bal-ance between node storage space and collection efficiency.In addition,for data collection in disaster scenarios,a dynamic adjustment of disaster sensing coding redundancy(DADSCR)is proposed,which dynamically adjusts the number of random walk packets sent through the perception of neighbor status,adaptively increases redundancy,and further improve data recovery rate.

关 键 词:大规模无线对等感知网络 动态自适应编码 触发型数据 部分数据收集 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象