检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余午阳 王一博 陈新国 黄权中[1,2,3] 黄冠华[1,2,3] YU Wuyang;WANG Yibo;CHEN Xinguo;HUANG Quanzhong;HUANG Guanhua(College of Water Resources and Civil Engineering,China Agricultural University,Beijing 100083,China;Center for Agricultural Water Research in China,China Agricultural University,Beijing 100083,China;Chinese-Israeli International Center for Research and Training in Agriculture,Beijing 100083,China)
机构地区:[1]中国农业大学水利与土木工程学院,北京100083 [2]中国农业大学中国水问题研究中心,北京100083 [3]中国-以色列国际农业研究培训中心,北京100083
出 处:《灌溉排水学报》2023年第12期28-35,共8页Journal of Irrigation and Drainage
基 金:国家自然科学基金项目(U2243217,52220105007);国家级创新训练项目(202210019041)。
摘 要:【目的】基于阈值特征-随机森林算法对青铜峡灌区多年种植结构进行识别。【方法】以青铜峡灌区为研究对象,在实地调研和目视解译的基础上,基于谷歌地球引擎(Google Earth Engine)平台,采用阈值特征-随机森林方法识别2013—2020年青铜峡灌区主要粮食作物(春小麦、春玉米、水稻)的种植结构。【结果】阈值特征-随机森林算法能够用于干旱灌区多年种植结构识别,总体分类精度为0.88,Kappa系数为0.76。春小麦、春玉米、水稻的遥感提取面积与统计种植面积之间的线性拟合决定系数(R2)分别为0.80、0.93和0.86;2013—2020年作物种植面积由大到小分别为春玉米>水稻>春小麦,春玉米种植面积呈持续上升趋势,春小麦种植面积呈先升高后下降的变化趋势,水稻种植面积呈下降趋势;春玉米主要集中在灌区的北部和南部,种植区域呈南移趋势;春小麦主要集中在灌区的中部和南部,水稻主要集中在灌区中部地区,种植区域呈向北迁移的趋势。【结论】阈值特征-随机森林算法能够较好地适用于干旱灌区多年种植结构的识别,为长时间序列种植结构识别提供了新方法和思路。【Objective】Tracking the change in cultivation areas of different crops in a basin or catchment is essential for agricultural management but challenging.The objective of this paper is to investigate the feasibility of threshold feature-random forest classification model for extracting crop structure from remote sensing imageries of irrigation district.We took Qingtongxia irrigation as an example.【Method】Using field survey and visual interpretation,the threshold feature-random forest classification method in the Google Earth Engine platform was used to delineate the planting areas of spring wheat,spring maize,and rice within the Qingtongxia irrigation district from 2013 to 2020.【Result】The threshold feature-random forest classification method is effective for extracting planting structure in the Qingtongxia irrigation district in the seven years,with an overall accuracy of 0.88 and a Kappa coefficient of 0.76.The linear fitting between the extracted areas from the remote sense images and areas obtained from survey gave a R2 which was 0.80,0.93 and 0.86,for spring wheat,spring maize and rice,respectively.Data analysis revealed that the planting area of spring maize surpassed that of rice and spring wheat in 2013 to 2020.Spring maize cultivation had notably increased,while spring wheat cultivation initially increased and then declined;rice cultivation also decreased.Spring maize was mainly grown in the North and South of the irrigation district,while the overall irrigation area increased from the North to the South.Spring wheat was primarily cultivated in central and Southern parts of the irrigation district,and rice was in the central region.Spring wheat and rice cultivation areas increased from the South to the North.【Conclusion】The threshold feature-random forest classification model is effective and accurate for extracting annual change in planting structures in irrigation districts in arid regions.It is novel and perspective for understanding long-term evolution in planting structure in a region.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38