An Improved Preisach Distribution Function Identification Method Considering the Reversible Magnetization  

在线阅读下载全文

作  者:Long Chen Lvsheng Cui Tong Ben Libing Jing 

机构地区:[1]College of Electrical Engineering and New Energy,China Three Gorges University,Yichang,443002,China [2]Hubei Provincial Engineering Technology Research Center for Power Transmission Line,China Three Gorges University,Yichang 443002,China [3]Hebei University of Technology,Tianjin 300130,China [4]IEEE

出  处:《CES Transactions on Electrical Machines and Systems》2023年第4期351-357,共7页中国电工技术学会电机与系统学报(英文)

基  金:supported by the National Natural Science Foundation of China under Grant 52007102,52207012;by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERIKF2021015。

摘  要:This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification process by stripping the influence of reversible components from the measurement data,the Preisach distribution function is identified by the pure irreversible components.In this way,the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured.Furthermore,through a discrete Preisach plane with a hybrid discretization method,the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model.Finally,the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.

关 键 词:Magnetic material Preisach distribution function Reversible magnetization Hybrid discretization method 

分 类 号:TM271[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象