基于CEEMDAN降噪与双谱分析的滚动轴承故障诊断  被引量:2

Rolling Bearing Fault Diagnosis Based on CEEMDAN De-noising and Bispectral Analysis

在线阅读下载全文

作  者:边杰 陈亚农 郑锦妮 徐友良 刘飞春 BIAN Jie;CHEN Ya-nong;ZHENG Jin-ni;XU You-liang;LIU Fei-chun(AECC Hunan Aviation Powerplant Research Institute,Hunan Zhuzhou 412002,China;AECC Key Laboratory of Aero-engine Vibration Technology,Hunan Zhuzhou 412002,China)

机构地区:[1]中国航发湖南动力机械研究所,湖南株洲412002 [2]中国航空发动机集团航空发动机振动技术重点实验室,湖南株洲412002

出  处:《航空发动机》2023年第6期47-53,共7页Aeroengine

基  金:航空动力基础研究项目资助。

摘  要:滚动轴承早期故障信号中的噪声成分会影响到故障特征的提取。为了提高含噪故障信号中滚动轴承早期故障特征提取的准确性,将基于自适应噪声的完备经验模态分解(CEEMDAN)用于滚动轴承振动信号的降噪中,并对降噪后的轴承故障信号进行双谱分析。结果表明:CEEMDAN可有效去除轴承振动信号中的低频噪声干扰,经CEEMDAN降噪后的不同轴承故障信号的双谱全局图存在明显差异,根据这些差异可在宏观上对不同轴承故障加以区分;通过经CEEMDAN降噪后的不同轴承故障信号的双谱细节图可以正确提取不同轴承故障的特征频率,从而实现对各轴承故障的有效诊断。CEEMDAN降噪结合双谱分析可为滚动轴承故障诊断提供一种新的有效方法。The noise components in the early fault signals of rolling bearings can affect the extraction of fault features.To improve the accuracy of early fault feature extraction in noisy fault signals of rolling bearings,a complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)was applied to denoise rolling bearing vibration signals,and bispectral analysis was performed on the denoised bearing fault signals.The results show that CEEMDAN can effectively remove the low-frequency noise interference in bearing vibration sig-nals.After being denoised by CEEMDAN,there are significant differences in the bispectral global maps of different bearing fault signals.These differences can be used to distinguish different bearing faults on a macro level.By using the bispectral detail maps of different bear-ing fault signals denoised by CEEMDAN,the feature frequencies of different bearing faults can be accurately extracted,thus achieving an effective diagnosis of each bearing fault.CEEMDAN denoising combined with bispectral analysis can provide a new and effective method for fault diagnosis of rolling bearings.

关 键 词:基于自适应噪声的完备经验模态分解 降噪 故障诊断 滚动轴承 双谱 

分 类 号:V216.21[航空宇航科学与技术—航空宇航推进理论与工程] V233.45V263.6

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象