基于用户画像的企业负荷调峰分组方法  

Enterprise Load Peak Regulation Grouping Methods Based on User Profile

在线阅读下载全文

作  者:董晓天 周全 缪瑞峰 邱林泉 孟萍 王绍平 DONG Xiaotian;ZHOU Quan;MIAO Ruifeng;QIU Linquan;MENG Ping;WANG Shaoping(State Grid Hefei Power Supply Company,Hefei 230000,China)

机构地区:[1]国网合肥供电公司,安徽合肥230000

出  处:《安徽电气工程职业技术学院学报》2023年第4期16-24,共9页Journal of Anhui Electrical Engineering Professional Technique College

摘  要:需求响应在缓解迎峰度夏期间电力供需矛盾中的重要性日益凸显,对工商业用户进行高效合理、公平公正、具备可解释性的调峰轮休分组将直接影响用户参与积极性和需求响应人员的效率与执行效果。然而,现有的分组方法常常依赖于用户历史数据与负荷管理人员经验,难以实现公平合理的调峰分组。为了解决这一问题,文章提出了一种基于用户画像的工商业用户调峰轮休分组模型,该模型基于打捆划分思想,旨在提升用户满意度的基础上,快速简便地实现对调峰轮休用户需求响应资源的分配最优化。该模型的核心思想是将工业用户根据一系列关键因素进行用户画像,包括但不限于能源消耗模式、负荷曲线、产能需求等。通过对这些因素进行综合分析和量化评估,实现将相似特征的用户归为一组,在调峰轮休安排表中形成合理的分组方案。The importance of demand response in alleviating the power supply-demand contradiction during peak summer periods is increasingly evident.The efficient,fair,transparent,and interpretable peak adjustment and shift grouping for industrial and commercial users will directly affect their participation and the efficiency and effectiveness of load management.However,the existing grouping methods often rely on previous data and experience,making it difficult to achieve fair and reasonable staggered grouping.To address this issue,this paper proposes a user profile-based staggered shift grouping model for industrial and commercial users.The model,based on the bundling approach,aims to quickly and easily achieve fair grouping of staggered shift users.The core idea of the model is to profile industrial users based on a series of key factors,including but not limited to energy consumption patterns,load curves,and capacity requirements.By comprehensively analyzing and quantitatively evaluating these factors,similar user characteristics are grouped together,forming a rational grouping scheme in the staggered shift schedule.

关 键 词:负荷管理 有序用电 需求响应 用户画像 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象