检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王意存 邵长孝 金台 邢江宽 罗坤[1,4] 樊建人[1,4] WANG Yi-cun;SHAO Chang-xiao;JIN Tai;XING Jiang-kuan;LUO Kun;FAN Jian-ren(State Key Laboratory of Clean Energy Utilization,Zhejiang University,Hangzhou 310027,China;Center for Turbulence Control,Harbin Institute of Technology,Shenzhen Campus,Shenzhen 518055,China;School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China;Shanghai Institute for Advanced Study of Zhejiang University,Shanghai 200120,China)
机构地区:[1]浙江大学能源高效清洁利用全国重点实验室,浙江杭州310027 [2]哈尔滨工业大学(深圳)湍流控制研究所,广东深圳518055 [3]浙江大学航空航天学院,浙江杭州310027 [4]浙江大学上海高等研究院,上海200120
出 处:《浙江大学学报(工学版)》2023年第12期2401-2411,共11页Journal of Zhejiang University:Engineering Science
基 金:国家杰出青年科学基金资助项目(51925603);国家自然科学基金资助项目(52236002)。
摘 要:为了更好地在小火焰燃烧模型框架内实施燃烧热化学流形表征,采用多任务学习领域中的多门控混合专家网络(MMoE).通过对三维层流喷雾射流火焰构型进行详细化学(DC)模拟,构建原始数据集.原始数据集经过Box-Cox转换和标准化处理,以应对燃烧数据的多尺度分布问题.对数据集进行Pearson相关系数分析,结果表明部分化学组分之间无明显的相关性.分别构建同等参数量规模的MMoE和前馈神经网络(FNN)模型,对比分析结果表明,2种模型取得的损失值和决定系数相近,但相比FNN模型,MMoE模型在训练过程中更加稳定,且取得的定量预测结果更加准确.The multi-gate mixture of experts(MMoE)for multi-task learning was applied to better implement the representation of combustion thermochemical manifolds in the framework of flamelet-based combustion models.Detailed chemistry(DC)simulation of a three-dimensional laminar spray jet flame was conducted to generate the original dataset.The original dataset was preprocessed by Box-Cox transformation and Z-score normalization to deal with the multi-scale distributions of combustion data.Correlation analysis was performed on the dataset using the Pearson correlation coefficient,and the results showed that there was no significant correlation between some chemical species.The MMoE and feedforward neural network(FNN)models were constructed respectively,and the comparison and analysis showed that although both models achieved similar loss values and coefficients of determination,the MMoE model was more stable during the training process and achieved more accurate quantitative prediction results than FNN model.
关 键 词:多门控混合专家网络(MMoE) 前馈神经网络(FNN) 小火焰模型 层流喷雾火焰 燃烧数值模拟
分 类 号:TK4[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33