Applications and potentials of machine learning in optoelectronic materials research:An overview and perspectives  

在线阅读下载全文

作  者:张城洲 付小倩 Cheng-Zhou Zhang;Xiao-Qian Fu(School of Information Science and Engineering,University of Jinan,Jinan 250022,China;Shandong Provincial Key Laboratory of Network based Intelligent Computing,University of Jinan,Jinan 250022,China)

机构地区:[1]School of Information Science and Engineering,University of Jinan,Jinan 250022,China [2]Shandong Provincial Key Laboratory of Network based Intelligent Computing,University of Jinan,Jinan 250022,China

出  处:《Chinese Physics B》2023年第12期108-128,共21页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No.61601198);the University of Jinan PhD Foundation (Grant No.XBS1714)。

摘  要:Optoelectronic materials are essential for today's scientific and technological development,and machine learning provides new ideas and tools for their research.In this paper,we first summarize the development history of optoelectronic materials and how materials informatics drives the innovation and progress of optoelectronic materials and devices.Then,we introduce the development of machine learning and its general process in optoelectronic materials and describe the specific implementation methods.We focus on the cases of machine learning in several application scenarios of optoelectronic materials and devices,including the methods related to crystal structure,properties(defects,electronic structure)research,materials and devices optimization,material characterization,and process optimization.In summarizing the algorithms and feature representations used in different studies,it is noted that prior knowledge can improve optoelectronic materials design,research,and decision-making processes.Finally,the prospect of machine learning applications in optoelectronic materials is discussed,along with current challenges and future directions.This paper comprehensively describes the application value of machine learning in optoelectronic materials research and aims to provide reference and guidance for the continuous development of this field.

关 键 词:optoelectronic materials DEVICES machine learning prior knowledge 

分 类 号:TB34[一般工业技术—材料科学与工程] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象