基于改进PBFT算法的雾节点信任评估研究  被引量:1

Research on Trust Assessment of Fog Nodes Based on Improved PBFT Algorithm

在线阅读下载全文

作  者:薛彪 石琼[1] 师智斌[1] 段辉 XUE Biao;SHI Qiong;SHI Zhibin;DUAN Hui(School of Computer Science and Technology,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学计算机科学与技术学院,山西太原030051

出  处:《中北大学学报(自然科学版)》2023年第6期632-640,共9页Journal of North University of China(Natural Science Edition)

基  金:山西省自然科学基金资助项目(20210302123075)。

摘  要:针对目前雾计算中雾节点与底层节点之间通信安全性低以及效率低的问题,提出了一种基于改进实用拜占庭容错(PBFT)算法的雾节点信任评估机制。首先通过改进PBFT算法的共识机制为雾层建立信任模型,得到节点的信任值,判断节点信任状态。然后根据雾节点的信任值大小选取主节点并组建共识群组。最后主节点对节点信任值、通信距离和节点负载率三个信任指标进行加权平均并归一化处理,为底层节点的任务请求选取出最优雾节点。仿真结果表明,该方法中恶意节点的占比降低了23.6%,吞吐率提高了90%,平均处理时延降低了1000 ms,有效提升了底层节点与雾节点之间的通信安全性以及效率。Based on improved Practical Byzantine Fault Tolerance(PBFT),a trust computing mechanism for fog nodes was proposed in order to solve the current problems of low communication security and efficiency from the fog nodes to the underlying node in fog computing.Firstly,a trust model for the fog layer was made by using the consensus mechanism of improved PBFT algorithm to get the trust value of nodes and judge the trust state of nodes.Then,the master node for the fog layer was selected according to the trust value of the node,and the consensus groups was built.Finally,the optimal fog node could be selected for the task request of the underlying node from the weighted average and normalized processing of the three trust indexes of node trust value,communication distance and node load rate by the major node.Simulation results show that the proportion of malicious nodes in this method is reduced by 23.6%,the throughput rate is increased by 90%,and the average processing delay is reduced by 1000 ms,which effectively improves the security and efficiency of communication between the bottom node and the fog node.

关 键 词:雾计算 PBFT 共识算法 信任评估 

分 类 号:TN913[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象