检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高子雁 李瑞冬 石鹏卿 周小龙 张娟 GAO Ziyan;LI Ruidong;SHI Pengqing;ZHOU Xiaolong;ZHANG Juan(Key Laboratory of Groundwater Engineering and Geothermal Resources in Gansu Province,Lanzhou,Gansu 730050,China;Geological Disaster Prevention and Control Technology Guidance Center,Gansu Provincial Department of Natural Resources,Lanzhou,Gansu 730050,China;Gansu Institute of Geological Environment Monitoring,Lanzhou,Gansu 730050,China)
机构地区:[1]甘肃省地下水工程及地热资源重点实验室,甘肃兰州730050 [2]甘肃省自然资源厅地质灾害防治技术指导中心,甘肃兰州730050 [3]甘肃省地质环境监测院,甘肃兰州730050
出 处:《中国地质灾害与防治学报》2023年第6期30-36,共7页The Chinese Journal of Geological Hazard and Control
基 金:甘肃省自然资源厅科技创新项目(202257);甘肃省科技重大专项(19ZD2FA002)。
摘 要:立节镇北山滑坡长期处于蠕动变形状态,已多次发生滑坡、泥石流灾害。监测地表形变,以掌握灾害体地表形变规律,是实现地质灾害预警预报的可靠依据。文章引入一种机器学习模型——长短期记忆网络,通过立节北山监测点位移数据,运用该方法对立节北山滑坡变形进行预测,并且将预测结果与实际数据进行比对和分析。文章预测结果评价指标选用均方根误差、平均绝对误差、决定系数以及可解释方差,其中决定系数和可解释方差均达到0.99,预测值和真实值的拟合均方根误差和平均绝对误差也表现较低,说明长短期记忆网络在立节北山滑坡变形的预测中达到了良好的预测性能。The North Mountain landslide in Lijie Town has been in a long-term creeping deformation state and has experienced multiple landslide and debris flow disasters.Monitoring the surface deformation of landslide to grasp the surface deformation pattern of disaster body is a reliable basis for realizing early warning prediction of geological disaster.In this paper,a machine learning model is introduced to predict the relevant data,and a long and short-term memory network is used to predict the landslide deformation by monitoring the displacement data of North Mountain in Lijie,and the prediction results are compared with the actual data and analyzed.In this paper,root mean square error,mean absolute error,coefficient of determination and explainable variance are used to evaluate the prediction results,among which the coefficient of determination and explainable variance reach 0.99.It shows that the long short-term memory network used in this paper achieves good prediction performance in the prediction of landslide deformation in the North Mountain of Lijie.
关 键 词:滑坡 长短期记忆网络 预测分析 立节北山 机器学习
分 类 号:P642.22[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222