基于测量机器人的深基坑维护结构侧向变形监测研究  被引量:2

Research on Lateral Deformation Monitoring of Deep Foundation Pit Maintenance Structure Based on Measuring Robot

在线阅读下载全文

作  者:景海军 JING Haijun(The Second Engineering Co.,Ltd.of China Railway 18th Bureau Group,Tangshan 064000,Hebei,China)

机构地区:[1]中铁十八局集团第二工程有限公司,河北唐山064000

出  处:《广东交通职业技术学院学报》2023年第4期41-45,共5页Journal of Guangdong Communication Polytechnic

摘  要:传统的基坑养护结构变形监测方法需要高点布置、应用范围广,所需观察者较多,因而监测成本高,在布置过程中测斜管一旦损坏便很难恢复。本研究提出了测量机器人在深基坑维护结构侧向变形中的应用。为了实现对深基坑壳三维位移的自动控制,对监测网络布局、测量方法、系统误差、系统组成检查进行分析,在整个监测系统中进行计算分析和维护,既可以降低监测成本,又可以提高监测效率。由监测结果可知,该方法的桩体水平位移与实际位移最大误差为0.5 mm,深基坑地表沉降深度与实际位移最大误差为0.6 mm,监测结果精准,可为之后深基坑工程安全控制提供技术支持。Traditional methods for monitoring deformation in the maintenance structures of deep excavations require high point layout,have a wide application range,involve multiple observers,and incur high monitoring costs.Once the inclinometer pipes are damaged during the installation process,it is difficult to restore them.On this basis,the application of measurement robots in the lateral deformation of deep excavation maintenance structures is proposed.In order to achieve automatic control of 3D displacement of deep excavation shells,analysis of monitoring network layout,measurement methods,system errors,and system composition inspection are conducted in the entire monitoring system for calculation analysis and maintenance.This approach can reduce monitoring costs and improve monitoring efficiency.According to the monitoring results,the maximum error between pile horizontal displacement and actual displacement using this method is 0.5 mm,and the maximum error between surface settlement depth of deep excavations and actual displacement is 0.6 mm.It provides precise monitoring results and can provide technical support for the safety control of future deep excavation projects.

关 键 词:深基坑 围护结构 侧向变形 机器人监测 

分 类 号:TU433[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象