检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许金朵[1,2] 侯渲 马荣华 陈曦[1,3] 王贞 XU Jinduo;HOU Xuan;MA Ronghua;CHEN Xi;WANG Zhen(Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,P.R.China;Lake-Watershed Sub Data Center,National Earth System Science Data Center,Nanjing 210008,P.R.China;Sun Yat-Sen University,Guangzhou 510275,P.R.China)
机构地区:[1]中国科学院南京地理与湖泊研究所,南京210008 [2]国家地球系统科学数据中心湖泊-流域分中心,南京210008 [3]中山大学,广州510275
出 处:《中国科学数据(中英文网络版)》2023年第4期308-321,共14页China Scientific Data
基 金:中国科学院“十四五”网络安全和信息化专项(CAS-WX2022SDCSJ05,CAS-WX2021SF-0306)。
摘 要:全球气候变暖趋势下,2022年夏季我国长江流域受气候异常影响,出现自1961年有完整气象观测记录以来的最强高温过程,导致长江支流水位持续走低,受气候影响明显的长江中游通江湖泊鄱阳湖、洞庭湖出现了“汛期反枯”的罕见现象。湖泊是全球气候变化的指示器,湖泊水体面积变化成为区域生态环境和气候变化的敏感指标之一。本研究利用GEE云计算平台调用Sentienl-1 SAR数据计算双极化水体指数SDWI,通过OTSU算法计算最佳阈值,获得了2022年强高温期间长江中游鄱阳湖、洞庭湖及周边地区10 m分辨率的水体变化监测数据,数据总体精度达96%以上。本数据集包含2022年强高温期间长江中下游主要水体的干旱时空变化信息,为极端天气湖泊水资源可持续利用等研究提供数据支撑,也为全球气候变化与湖泊生态演化等研究提供数据支撑与科学依据。Due to global warming and climate change,affected by climate anomalies,Yangtze River basin in China experienced the strongest high-temperature process since the complete meteorological observation records in 1961.This process led to the continuous low water level of Yangtze River tributaries and the rare phenomenon of"anti-depletion of flood season"in Poyang Lake and Dongting Lake,both of which were influenced by this climate event.Lakes are indicators of global climate change,and water area changes in lakes have become one of the sensitive indicators of regional ecological environment and climate change.In this study,we used the GEE cloud computing platform to call Sentienl-1 SAR data to calculate the sentinel-1 dual-polarized water index(SDWI).Then,we determined the optimal threshold value using the OTSU algorithm to obtain the final water change monitoring data at 10m resolution for the main body of Poyang Lake,Dongting Lake and their surrounding areas during extremely high temperatures in 2022.This dataset has been validated to with an overall accuracy of over 96%and a Kappa coefficient of 0.92.The dataset includes spatiotemporal variations in arid water bodies in the middle and lower reaches of the Yangtze River during extremely high temperatures in 2022.The dataset can offer data support and serve as a scientific foundation for sustainable lake water resources during extreme weather events,as well as for research on global climate change and the ecological evolution of lakes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7