基于多元信息融合的变压器励磁涌流识别研究  被引量:1

Research on Transformer Inrush Current Identification Based on Multivariate Information Fusion

在线阅读下载全文

作  者:韩志 HAN Zhi(Chengde Power Supply Company of State Grid Jibei Electric Power Co.,Ltd.,Chengde 067000,China)

机构地区:[1]国网冀北电力有限公司承德供电公司,河北承德067000

出  处:《微型电脑应用》2023年第12期215-219,共5页Microcomputer Applications

摘  要:为了解决强干扰情况下变压器励磁涌流识别准确率低的问题,在分析变压器励磁涌流原理的基础上,提出一种融合时域、频域和时频域多元特征量的变压器励磁涌流识别数学模型,其中时域特征量选取间断角,频域特征量选取相关性系数、二次谐波幅值、二次谐波与基波相位差,时频域特征量小波包能量则采用具有优良时频性能的小波包进行提取,并利用改进随机森林法实现多元特征量与变压器电流类别的非线性映射。建立变压器励磁涌流和内部故障电流仿真模型,通过不同干扰程度下的识别对比分析,证明了该方法具有更高的识别准确率和更强的抗干扰能力。In order to solve the problem of low identification accuracy of transformer inrush current under strong interference,based on the principle analysis of transformer inrush current,a mathematical model for transformer inrush current identification that integrates multiple characteristic quantities of time domain,frequency domain and time frequency domain is proposed.The discontinuity angle is selected as the time domain characteristic quantity,correlation coefficient,amplitude of the second harmonic,phase difference between the second harmonic and the fundamental wave are selected as frequency domain characteristics,and the energy of characteristic quantity wavelet packet in time-frequency domain is extracted by wavelet packet with excellent time-frequency performance,then the improved random forest method is used to realize the nonlinear mapping between the multivariate characteristic quantity and the transformer current category.The transformer inrush current and internal fault current simulation model is established.Through comparative analysis of identification under different interference levels,it is proved that the proposed method has higher recognition accuracy and stronger anti-interference ability.

关 键 词:变压器 励磁涌流 特征量 小波包变换 随机森林 

分 类 号:TM761[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象