基于组合赋权灰色关联法的塑料齿轮非线性收缩尺寸偏差优化  

Optimization of Nonlinear Shrinkage Size Deviation of Plastic Gear Based on Combination Weighted Grey Correlation Method

在线阅读下载全文

作  者:陈拓 王权[1] 王晓东 郑悦 CHEN Tuo;WANG Quan;WANG Xiaodong;ZHENG Yue(College of Mechanical Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)

机构地区:[1]天津职业技术师范大学,机械工程学院,天津300222

出  处:《塑料》2023年第6期152-158,共7页Plastics

基  金:天津市研究生科研创新项目(2022SKYZ160)。

摘  要:注塑成型过程中,塑料齿轮的非线性收缩变形会导致尺寸精度较差,通过数值模拟方法可以分析塑料齿轮的非线性问题,优化尺寸精度。利用UG和Moldflow软件对塑料齿轮进行非线性收缩分析并结合仿真研究,选定齿顶圆和齿根圆直径偏差为多目标响应,提出一种以田口方法为基础,将CRITIC法和层次分析法进行组合赋权与灰色关联法相结合确定灰色关联度,得到最佳工艺参数组合和各因素影响程度。利用Moldflow正反向导出CAD模型,采用UG测量误差,建立变形预补偿优化模型,进一步优化塑料齿轮精度,得到的齿顶圆和齿根圆直径偏差分别减少了82.36%~84.93%、88.58%~90.58%。In the process of injection molding,the poor dimensional accuracy was lead because of the nonlinear shrinkage deformation of plastic gear.The nonlinear problem of plastic gears could be analyzed and the dimensional accuracy could be optimized through numerical simulation.Specifically,UG and Moldflow software were used to analyze the characteristics of nonlinear shrinkage of plastic gears and combined with simulation.The addendum circle diameter deviation and root circle diameter deviation were selected as multi-objective responses.The combination of CRITIC method and AHP was used to determine the grey correlation degree by combining the combination of weighting and grey correlation method,and the optimal combination of process parameters and the influence degree of various factors were obtained.The optimal process parameter combination and the influence degree of various factors were obtained.The deformation pre-compensation optimization model was established to further optimize the precision of plastic gear using Moldflow forward and reverse derivation and UG measurement module.The results showed that the size deviation of addendum circle diameter and root circle diameter decreased by 82.36%~84.93%and 88.58%~90.58%respectively.

关 键 词:非线性收缩 CRITIC 层次分析法 灰色关联法 变形预补偿 

分 类 号:TP391.7[自动化与计算机技术—计算机应用技术] TQ320.66[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象