检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐啸林 卢林[2] 吴文恒[2] XU Xiaolin;LU Lin;WU Wenheng(School of Resources and Environmental Engineering,Shanghai Polytechnic University,Shanghai 201209,China;Shanghai Engineering Research Center of 3D Printing Materials,Shanghai Research Institute of Materials,Shanghai 200437,China)
机构地区:[1]上海第二工业大学资源与环境学院,上海201209 [2]上海材料研究所,上海3D打印材料工程技术研究中心,上海200437
出 处:《粉末冶金工业》2023年第6期118-126,共9页Powder Metallurgy Industry
基 金:上海市“科技创新行动计划”长三角科技创新共同体领域资助项目(21002420200);上海市青年科技启明星计划资助项目(22QB1401300)。
摘 要:紧耦合气雾化技术(Close-coupled gas atomization,CCGA)具有雾化效率高,粉末球形度好,综合生产成本低等优势,现已成为当前3D打印用金属粉末制备的主流技术之一。为进一步提升紧耦合气雾化的雾化效率,提升细粉收得率,促进3D打印产业的快速发展,对紧耦合气雾化的研究成为金属粉末制备领域的热点之一。近年来,研究者们开始使用高速摄影和粒子图像测速技术直观真实地观察到了气雾化过程中熔体破碎的细节,也为数值模拟得到的结果提供了实验验证,进一步揭示气雾化流场机制。同时,随着计算机运算能力的迅速发展和粉末形成理论模型的不断优化,将计算流体力学(Computational Fluid Dynamics,CFD)的数值模拟技术应用于对气雾化的研究得到广泛关注,研究者们对雾化流场结构和粉末粒径分布取得的研究成果极大促进了对气雾化流场机制的认识。高速摄影技术和数值模拟相辅相成,为气雾化实际生产中提高雾化效率提供了十分可靠的理论指导。因此,简述了基于图像观察和数值模拟的紧耦合气雾化的研究进展,归纳了两种方法在流场结构和雾化机制研究方面的应用,总结了两种方法用于指导雾化工艺参数优化及喷盘结构参数设计实践的进展。Close-coupled gas atomization(CCGA) has become one of the mainstream technologies for the production of metal powders for additive manufacturing, with advantages such as high atomization efficiency, good powder sphericity and low overall production costs. In order to further improve the atomization efficiency of close-coupled atomization and enhance the yield of fine powder, thus promoting the rapid development of the additive manufacturing industry, the study of close-coupled atomization has become one of the research hotspots in the field of metal powder production. In recent years, researchers have begun to use high-speed photography and particle image velocimetry to visualize the details of melt fragmentation during atomization and to provide experimental validation of the results obtained from numerical simulations, further revealing the atomization flow field mechanism. At the same time, with the rapid development of computer computing power and theoretical models for different stages of powder forming, the application of Computational Fluid Dynamics(CFD) numerical simulation techniques to the study of atomization has received widespread attention, and the results obtained by researchers on the structure of the gas flow field and powder particle size distribution have greatly contributed to the understanding of the mechanism of atomization. High-speed photographic techniques and numerical simulations complement each other and provide very reliable theoretical guidance for improving atomization efficiency in practical atomized production. This paper briefly describes the progress of research on close-coupled atomization based on image observation and numerical simulation, induces the application of the two methods in the study of gas flow field structure and atomization mechanism, and summarizes the progress of the two methods in guiding the optimization of atomization process parameters and the design of atomizer structure parameters.
关 键 词:紧耦合气雾化 高速摄影图像 数值模拟 雾化参数 粉末制备
分 类 号:TF123.112[冶金工程—粉末冶金] TP391.73[冶金工程—冶金物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3