基于萤火虫算法的随机工时下船舶维修工期优化  

Improved firefly algorithm for the stochastic duration optimization of the ship maintenance

在线阅读下载全文

作  者:陈志敏[1] 夏源 王鹏[2] 王正湖 张利平[4] CHEN Zhimin;XIA Yuan;WANG Peng;WANG Zhenghu;ZHANG Liping(China Ship Development and Design Center,Wuhan 430064,China;The 91184 Unit of PLA,Qingdao 266000,China;Dalian Shipbuilding Industry Co.,Ltd.,Dalian 116005,China;Wuhan University of Science and Technology,Wuhan 430081,China)

机构地区:[1]中国舰船研究设计中心,湖北武汉430064 [2]中国人民解放军91184部队,山东青岛266000 [3]大连船舶重工集团有限公司,辽宁大连116005 [4]武汉科技大学,湖北武汉430081

出  处:《中国舰船研究》2023年第6期128-133,共6页Chinese Journal of Ship Research

基  金:国家自然科学基金资助项目(51875420)。

摘  要:[目的]针对船舶维修牵连工程复杂、空间干涉多、任务工时不确定等特性,提出一种解决随机工时下船舶维修工期优化的模型和算法。[方法]基于情景理念设计维修工程的期望工期指标,构建该问题的数学模型;基于并行调度模式解码,提出一种改进萤火虫算法求解该模型;采用工程案例测试集和某船舶坞内维修工程实例,验证所提模型和算法的性能。[结果]某船舶坞内维修工程实例优化结果表明,其工期估值为89.6 d,置信度95.6%,与原方法工期相比减少13.4 d,可缩短13.1%的工期。[结论]改进的萤火虫算法可有效优化船舶维修工程的工期,为不确定条件下的船舶维修进度计划制定提供依据。[Objective]Ship maintenance projects have such characteristics as complex implicated tasks,space interference and uncertain task durations.A mathematical model and optimization algorithm are proposed to solve the stochastic duration optimization problem of ship maintenance.[Methods]According to the scenario concept,this paper designs the expected duration as an objective function and constructs a mathematical model,then proposes an improved firefly algorithm to solve the problem.Finally,a group of benchmark projects and one dock maintenance engineering project are carried out to test the validity of the proposed method.[Results]The results show that the proposed method has the best performance in solving the problem.The optimized dock maintenance engineering project has 89.6 days of the expected duration and a 95.6%confidence level.Compared with the original method,the expected duration is reduced by 13.4 days and 13.1%.[Conclusion]This method can provide a basis for planning the schedules of ship maintenance projects.

关 键 词:维修进度计划 项目调度 随机调度 情景 萤火虫算法 

分 类 号:U673.2[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象