CW-YOLO: joint learning for mask wearing detection in low-light conditions  

在线阅读下载全文

作  者:Mingqiang GUO Hongting SHENG Zhizheng ZHANG Ying HUANG Xueye CHEN Cunjin WANG Jiaming ZHANG 

机构地区:[1]School of Computer Science,China University of Geosciences,Wuhan 430074,China [2]National Engineering Research Center of Geographic Information System,Wuhan 430074,China [3]Wuhan Zondy Cyber Technology Co.Ltd.,Wuhan 430074,China [4]Shenzhen Data Management Center of Planning and Natural Resources,Shenzhen 518000,China [5]Key Laboratory of Urban Land Resources Monitoring and Simulation(Ministry of Natural Resources),Shenzhen 518000,China [6]College of Engineering,Boston University,Boston 02215,USA

出  处:《Frontiers of Computer Science》2023年第6期191-193,共3页中国计算机科学前沿(英文版)

基  金:funded by the National Natural Science Foundation of China(Grant Nos.41971356,41701446);the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(KF-2022-07-001).

摘  要:1 Introduction With the rapid progress of Artificial Intelligence(AI)technology in object detection and face recognition,deep learning methods for face mask wearing detection have become increasingly mature and continuously take into account the needs of efficiency and accuracy.However,these conventional detection methods mostly ignore the complexity of real-world application scenarios,such as extremely darkness and gloomy weather.These unfavorable conditions lead to a series of image degradations that seriously hamper machine vision tasks.Although camera parameter adjustment,auxiliary lighting,or pre-processing enhancement[1]can weaken these negative effects to some extent to promote the detection,they will also result in increased hardware and time costs.

关 键 词:hardware LIGHTING WEATHER 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象