基于加权估计的密集群目标跟踪调度方法  

A weighted estimation-based tracking scheduling method for dense group targets

在线阅读下载全文

作  者:田堂胜 杨利民[1,2] TIAN Tangsheng;YANG Liming(No.38 Research Institute,China Electronics Technology Group Corporation,Hefei 230088,China;Key Laboratory Aperture Array and Space Application,Hefei 230088,China)

机构地区:[1]中国电子科技集团公司第三十八研究所,合肥230088 [2]孔径阵列与空间探测安徽省重点实验室,合肥230088

出  处:《空天预警研究学报》2023年第4期309-312,共4页JOURNAL OF AIR & SPACE EARLY WARNING RESEARCH

摘  要:针对航迹关联中采用常规的跟踪调度方法探测“一箭多星”方式发射入轨的卫星群类空间目标时,存在调度偏离大、漏检目标等问题,提出了基于加权估计的密集群目标跟踪调度方法.首先分析了密集星群的分布特征和常规跟踪调度方法存在的问题;在此基础上提出了一种基于密集群当前位置和预测位置加权处理获取调度位置的方法;最后利用“星群”的历史探测数据进行方法验证和加权参数获取,并开展目标实际观测试验.试验结果表明,该方法能够有效地完成相控阵雷达在卫星群类密集场景下的跟踪调度,提升其跟踪能力.In track correlation,the conventional tracking scheduling method is used to detect the satellite group-typed space targets launched into orbit by means of“one rocket multi-satellite”,and there exist problems such as large scheduling deviation and missed detection targets,etc.In order to solve the aforementioned problem,this paper proposes a tracking scheduling method for dense group targets based on weighted estimation.Firstly,the paper analyzes the distribution characteristics of dense satellite groups and the problems existing in using conventional tracking scheduling method,and then,on this basis,presents a method for obtaining scheduling position based on weighted processing of dense groups current position and predicted position.Finally,the paper uses the historical detection data of satellite group to verify the method and acquire the weighted parameter,also with the actual observation experiment of the target carried out.Experiment results show that the proposed method can effectively complete the tracking and scheduling of phased array radar in the dense satellite cluster scenario,and improve its tracking capability.

关 键 词:群目标 加权估计 跟踪调度 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象