Strip segmentation of oceanic internal waves in SAR images based on TransUNet  

在线阅读下载全文

作  者:Kaituo Qi Hongsheng Zhang Jiaojiao Lu Yinggang Zheng Zhouhao Zhang 

机构地区:[1]College of Ocean Science and Engineering,Shanghai Maritime University,Shanghai 201306,China [2]Translational Research Institute of Brain and Brain-Like Intelligence,Shanghai Fourth People’s Hospital,School of Medicine,Tongji University,Shanghai 200434,China

出  处:《Acta Oceanologica Sinica》2023年第10期67-74,共8页海洋学报(英文版)

基  金:The National Natural Science Foundation of China under contract No.51679132;the Science and Technology Commission of Shanghai Municipality under contract Nos.21ZR1427000 and 17040501600.

摘  要:The development of oceanic remote sensing artificial intelligence has made possible to obtain valuable information from amounts of massive data.Oceanic internal waves play a crucial role in oceanic activity.To obtain oceanic internal wave stripes from synthetic aperture radar(SAR)images,a stripe segmentation algorithm is proposed based on the TransUNet framework,which is a combination of U-Net and Transformer,which is also optimized.Through adjusting the number of Transformer layer,multi-layer perceptron(MLP)channel,and Dropout parameters,the influence of over-fitting on accuracy is significantly weakened,which is more conducive to segmenting lightweight oceanic internal waves.The results show that the optimized algorithm can accurately segment oceanic internal wave stripes.Moreover,the optimized algorithm can be trained on a microcomputer,thus reducing the research threshold.The proposed algorithm can also change the complexity of the model to adapt it to different date scales.Therefore,TransUNet has immense potential for segmenting oceanic internal waves.

关 键 词:oceanic internal waves deep learning stripe segmentation synthetic aperture radar TransUNet 

分 类 号:P714[天文地球—海洋科学] P237

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象