检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付芳 刘静华[2] FU Fang;LIU Jing-hua(Jiangxi University of Applied Science,Jiangxi Nanchang 330100,China;Nanchang University,Jiangxi Nanchang 330100,China)
机构地区:[1]江西应用科技学院,江西南昌330100 [2]南昌大学,江西南昌330100
出 处:《计算机仿真》2023年第10期141-145,共5页Computer Simulation
基 金:2021年教育部教育司协同育人项目(202102519003);2021年全国高校、职业院校物流教改教研课题(ZW2021122)。
摘 要:物流配送中的车辆调度是配送管理及决策的关键问题。多车辆的配送过程不仅要考虑车辆的配送效率,还要满足物流的配送时间约束以及车辆的装载率。为实现多车物流配送的自适应规划,引入免疫计算方法,将配送目标看作免疫算子,模仿其在免疫系统中的衍生规律及配送时间、需求点需求等信息。通过权重变换法初步划分待规划任务种群,平衡种群权重值。将物流配送需满足的时间、装载率、行驶距离等作为目标,采用定义法给出对应目标函数。根据免疫计算的遗传寻优步骤,按照目标函数逐一代入,并得出最优的自适应规划方案。仿真结果证明,所提规划方法的车辆配送路径和时间均更短,可以解决多车物流在复杂情况下的配送问题。At present,the key to distribution management and decision-making is the vehicle scheduling problem in logistics distribution.In order to realize the adaptive planning of multi-vehicle logistics distribution,immune computation was introduced.At first,we regarded the distribution target as an immune operator,and then simulated its derivation law in the immune system,distribution time and demand points.Moreover,we used the weight transformation method to divide the task population to be planned preliminarily and thus to balance the weight value of the population.After taking the time,loading ratio and driving distance required by logistics distribution as the objectives,we gave the objective functions correspondingly by using a definition method.According to the genetic optimization steps of immune computation,we substituted them one by one.Finally,we obtained the optimal adaptive planning scheme.Simulation results show that the proposed method has shorter delivery path and time,so it is able to solve the distribution problem of multi-vehicle logistics in complex situations.
关 键 词:多车物流配送 免疫算子 衍生规律 遗传过程 目标函数
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.152.135