检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ziqiang Bai Wenzhen Qu Guanghua Wu
机构地区:[1]School of Automation,Qingdao University,Qingdao,266071,China [2]School of Mathematics and Statistics,Qingdao University,Qingdao,266071,China [3]Weifang University of Science and Technology,Weifang,262700,China
出 处:《Computer Modeling in Engineering & Sciences》2024年第3期2955-2972,共18页工程与科学中的计算机建模(英文)
基 金:the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06);the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140);the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
摘 要:In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
关 键 词:Generalized finite difference method meshless method inverse Cauchy problems piezoelectric problems electroelastic analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.216.188