市政污水管道硫化氢生成影响因素及预测模型研究进展  被引量:1

RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES

在线阅读下载全文

作  者:远野 高君 张璐璐 陈天明[1,2] 丁成 YUAN Ye;GAO Jun;ZHANG Lulu;CHEN Tianming;DING Cheng(School of Environmental Science and Engineering,Yancheng Institute of Technology,Yancheng 224051,China;Jiangsu Environmental Protection Equipment Intelligent Engineering Research Center,Yancheng 224051,China;Science and Technology Department of Yancheng Institute of Technology,Yancheng 224051,China)

机构地区:[1]盐城工学院环境科学与工程学院,江苏盐城224051 [2]江苏省环保装备智慧化工程研究中心,江苏盐城224051 [3]盐城工学院科学技术处,江苏盐城224051

出  处:《环境工程》2023年第11期69-77,共9页Environmental Engineering

基  金:国家自然科学基金项目(52170054,51608467)。

摘  要:污水在市政污水管道的运输过程中,会释放大量的硫化氢(H_(2)S),易引发恶臭、中毒和管道腐蚀等问题。采用合理的预测模型对管道中H_(2)S的产生进行预测,可为后续采取相关的H_(2)S控制措施提供依据,对于污水管网的规划也具有重要意义。因此,首先分析了影响污水管道中H_(2)S生成的主要因素;其次将H_(2)S生成预测模型按照传统统计学和机器学习2类进行归类,并总结其研究进展;最后,探索了H_(2)S生成预测模型的潜在研究热点和难点,以期为市政污水管道H_(2)S预测模型的建立提供参考。When sewage is transported in municipal sewer pipes,a large amount of hydrogen sulfide(H_(2)S)will be released.This toxic and harmful gas is easy to cause odor,poisoning,and pipeline corrosion.Using a reasonable prediction model to predict the generation of H_(2)S in the pipeline can provide a basis for the subsequent adoption of relevant H_(2)S control measures,and has important practical significance for the planning of the sewage pipeline network.In this paper,the main factors affecting the generation of H_(2)S in the sewage pipeline are analyzed;H_(2)S generation prediction models are classified into two types of traditional statistics and machine learning,and their research progress is summarized;the potential research hotspots and difficulties of H_(2)S prediction model are explored to provide a reference for establishment of H_(2)S prediction model of municipal sewage pipeline.

关 键 词:市政污水管道 硫化氢 影响因素 机器学习 预测模型 

分 类 号:X703[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象