基于改进粒子群算法的城市配电网线损计算方法  

Line Loss Calculation Method of Urban Distribution Network Based on Improved Particle Swarm Optimization

在线阅读下载全文

作  者:张革 鲍丽光 张勒宁 ZHANG Ge;BAO Liguang;ZHANG Lening

机构地区:[1]国网天津城东供电公司,天津300250 [2]国网天津建设公司(监理公司),天津300400

出  处:《今日自动化》2023年第11期159-161,共3页Automation Today

摘  要:由于对配电网线损影响因素作用效果的分析不够完善,导致对线损的计算也存在一定误差,为此,提出改进粒子群算法的城市配电网线损计算方法。粒子群算法每个粒子作为影响因素对线损作用效果的一个候选解,实际的配电网线损数据和配电执行参数作为训练样本,按照设置的粒子移动速度,在可执行空间内计算得到各个参数权重的最优解。考虑到了参与计算的数据中可能存在噪声,在分别计算了各自离散程度后,过滤掉与数据中心的距离大于均值距离的数据,将其代入到改进粒子群算法中,计算得到城市配电网的线损。在对比测试结果中,设计方法的绝对误差和相对误差最大值分别仅为0.27%和3.94%,具有较高的准确性。Because the analysis of the effect of the influencing factors on the line loss of the distribution network is not perfect,the calculation of the line loss also has some errors.Therefore,an improved particle swarm optimization algorithm for the calculation of the line loss of the urban distribution network is proposed.Each particle in the particle swarm optimization algorithm is used as a candidate solution for the effect of influencing factors on line loss.The actual distribution network line loss data and distribution execution parameters are used as training samples.According to the set particle movement speed,the optimal solution of each parameter weight is calculated in the executable space.Considering that there may be noise in the data involved in the calculation,after calculating their respective dispersion degrees,the data whose distance from the data center is greater than the mean distance is filtered out,and it is brought into the improved particle swarm optimization algorithm to calculate the line loss of the urban distribution network.In the comparative test results,the maximum absolute error and relative error of the design method are only 0.27%and 3.94%,respectively,which have high accuracy.

关 键 词:改进粒子群算法 配电网线损 粒子移动速度 权重 离散程度 数据过滤掉 

分 类 号:TM744[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象