安全可视化系统在矿山皮带运输中的应用  

Application of Safety Visualization System in Mine Belt Transportation

在线阅读下载全文

作  者:李永华[1] 郝利军[2] 贾瑞敏[1] 丁科[1] LI Yonghua;HAO Lijun;JIA Ruimin;DING Ke(Bayan Obo Iron Mine of Baotou Steel(Group)Company;Barun Mining Branch,Inner Mongolia Baotou Steel Union Co.,Ltd.)

机构地区:[1]包钢(集团)公司白云鄂博铁矿 [2]内蒙古包钢钢联股份有限公司巴润矿业分公司

出  处:《现代矿业》2023年第12期232-235,共4页Modern Mining

摘  要:矿山皮带运输为生产事故多发环节,是重点监控对象之一。为了减少皮带运输过程的安全事故,实现智能化管理,系统基于长输皮带机工况特点,总结出皮带失速、跑偏、撕裂、堆矿、流量及人员安全防范等常见重点关注事件类型;在此基础上,基于皮带故障识别技术,在沿线关键位置布署智能摄像机,通过建立皮带运行图库、提取特征图集、修正封装算法模型,最后由AI超脑服务器将训练好的算法模型发布到相应智能摄像机上,从而对事件类型进行识别;根据事件预警类型与2级评价机制,实现预警的快速响应与皮带运输机整体安全性评价,从而减少事故发生。该系统结构简单,在多个矿山应用效果良好,对于传统矿山运输机模式升级改造较为经济方便,能够有效提高皮带运输机常态化安全性能。Mine belt transportation is one of the key monitoring objects,which is a production accident-prone link.In order to reduce the safety accidents in the process of belt transportation and realize intelligent management,the system summarizes the common key event types such as belt stall,deviation,tearing,ore stacking,flow and personnel safety prevention based on the characteristics of long-distance belt conveyor working conditions.On this basis,based on the belt fault identification technology,intelligent cameras are deployed at key locations along the line.By establishing the belt operation gallery,extracting the feature atlas,and modifying the encapsulation algorithm model,the trained algorithm model is finally released by the AI super brain server to the corresponding intelligent camera,so as to identify the event type.According to the type of event early warning and the two-level evaluation mechanism,the rapid response of early warning and the overall safety evaluation of belt conveyor are realized,so as to reduce the occurrence of accidents.The system has simple structure and good application effect in many mines.It is economical and convenient for the upgrading of traditional mine conveyor mode,and can effectively improve the normalized safety performance of belt conveyor.

关 键 词:皮带运输 图像监控 事件预警 

分 类 号:TD528.1[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象