考虑旅客到达准时性的城市值机移动站点动态分布模型  

A Dynamic Distribution Model of Urban Mobile Stations Considering Passengers'Arrival Punctuality

在线阅读下载全文

作  者:张铭霞 周航[1,2] 胡小兵 ZHANG Mingxia;ZHOU Hang;HU Xiaobing(Laboratory of Complex System Safety and Intelligent Decisions,Civil Aviation University of China,Tianjin 300300,China;Sino-European Institute of Aviation Engineering,Civil Aviation University of China,Tianjin 300300,China;College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学体系安全和智能决策实验室,天津300300 [2]中国民航大学中欧航空工程师学院,天津300300 [3]中国民航大学安全科学与工程学院,天津300300

出  处:《交通信息与安全》2023年第5期167-175,共9页Journal of Transport Information and Safety

基  金:中央高校基本科研业务费中国民航大学专项(2000530441)资助。

摘  要:现有城市值机移动服务站点设施分布模型在优化中未考虑旅客到达服务站点的时间不确定性,其优化结果通常与实际情况存在差异,导致无法对提前或延误到达的旅客进行服务。为解决时间不确定性对优化求解造成的不利影响,研究基于旅客准时性概率函数的动态设施分布模型。针对城市值机移动服务站点布局优化问题,构建完整的数学模型,并提出动态设施分布的优化评价指标。采用正态分布型旅客准时性概率函数,用以预估旅客实际到站时间与申报到站时间的差异。基于不同服务时段客源点的位置分布,采用涟漪扩散算法和遗传算法优化服务站点位置并计算所有旅客与站点间的最优路径。基于天津市路网和旅客分布的真实数据,对旅客准时到站和考虑旅客到站时间不确定2种场景进行仿真对比实验。结果表明:旅客到站时间概率模型优化结果优于旅客准时到站模型,动态设施分布评价指标提升4.31%。其中,旅客到达站点的平均路径长度减少0.35%,旅客可接受距离总超出量减少6.26%,站点服务容量总超出量减少4.13%。旅客到站时间概率模型能够充分考虑到站时间不确定性,并基于旅客实际到站时间更好地优化设施布局。基于旅客准时性概率函数的城市值机移动服务站点动态分布模型具有可移植性,可应用于物流服务的动态选址等问题。The existing distribution model for urban mobile stations(UMS)has not considered the uncertainty in the arrival times of passengers to the service stations,resulting in discrepancy between the optimization outcomes and practical scenarios.This discrepancy can cause the inability to provide services for early-arrival and delayed passengers.To address the detrimental impact of the time uncertainty on optimization solutions,A dynamic facility-distribution model based on the probability function of passengers'arrival punctuality is proposed.In response to the layout optimization problem of UMS,a comprehensive mathematical model and evaluation indexes for the optimization of dynamic facility distribution are proposed.A punctuality probability function with a normal distribution form is introduced to estimate the difference between passengers'actual and declared arrival times.Based on the location distribution of passengers during different service periods,the ripple-spreading algorithm and genetic algorithm are adopted to optimize the positions of service stations and to compute the optimal paths between passengers and stations.Finally,based on empirical data on the road network and passengers'distribution in Tianjin,simulation experiments are conducted to compare the dynamic facility distribution models considering passengers'punctual arrival and passengers'arrival with probabilities.The results indicate that the optimization model considering the probability of passengers'arrival time outperform those of the model considering the passengers'punctual arrival,with a 4.31%enhancement in the evaluation indexes of the dynamic facility distribution model.Specifically,the average path length of passengers to arrival stations decreases by 0.35%,the total excess distance beyond acceptable distances for passengers decreases by 6.26%,and the total excess capacity beyond stations'service capacity decreases by 4.13%.Therefore,the proposed model effectively considers the uncertainty in arrival times and optimizes facility layout

关 键 词:智能交通 城市候机楼 城市值机移动服务站点 涟漪扩散算法 遗传算法 正态分布 到站时间概率 

分 类 号:U121[交通运输工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象