基于数据包络分析法的军工企业零件制造工时研究  被引量:2

Research on Parts Manufacturing Working Hours of Military Enterprises Based on Data Envelopment Analysis Method

在线阅读下载全文

作  者:吕良伟 孟飙 LYU Liangwei;MENG Biao(College of Aerospace Engineering,Shenyang Aerospace University,Shenyang 110136,China;Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process,Shenyang Aerospace University,Shenyang 110136,China)

机构地区:[1]沈阳航空航天大学航空宇航学院,沈阳110136 [2]沈阳航空航天大学航空制造工艺数字化国防重点学科实验室,沈阳110136

出  处:《机械工程师》2024年第1期34-38,共5页Mechanical Engineer

摘  要:传统的、依赖人工经验的零件制造工时定额和工时管理方法已不能满足军工企业对工时精细化管理的要求,为此提出了一种基于数据包络分析法的工时定额方法,通过引用数据包络分析法(DEA),根据零件加工设备的投入产出数据建立数据模型,根据零件类型,由生产信息数据库对生产线进行工艺分配,利用CCR模型和BCC模型对工时定额进行预测调整,使各个工序以最佳效率值工作,实现工时准确预测,最大程度上解决企业工时定额问题。针对S企业开展的案例分析,并与模特法进行对比试验,以验证该方法的可行性和有效性。The traditional part manufacturing working hour quota and working hour management method that relies on manual experience can no longer meet the requirements of the military industrial enterprises for the refined management of working hours,so a working hour quota method based on the data envelopment analysis method is proposed,and a data model is established according to the input and output data of the parts processing equipment by citing the data envelopment analysis method(DEA),and the process distribution of the production line is carried out according to the part type using the production information database,and the CCR model and the BCC model are used to predict and adjust the working hour quota,so that each process works with the best efficiency value,achieving accurate forecasting of working hours,and solving the problem of enterprise hour quota to the greatest extent.A case study is conducted on S enterprises,and a comparative experiment is conducted with the model method to verify the feasibility and effectiveness of the method.

关 键 词:数据包络分析方法 DEA 工时定额 零件制造 CCR BCC 

分 类 号:TH162.2[机械工程—机械制造及自动化] F243.3[经济管理—劳动经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象