检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:饶师瑾 钱文华[1] 张结宝 Rao Shijin;Qian Wenhua;Zhang Jiebao(School of Information Science and Engineering,Yunnan University,Kunming 650504,China)
机构地区:[1]云南大学信息学院,昆明650504
出 处:《中国图象图形学报》2023年第12期3825-3837,共13页Journal of Image and Graphics
基 金:国家自然科学基金项目(62162065);云南省科技厅基金项目(202105AF150011)。
摘 要:目的针对GANILLA、Paint Transformer、StrokeNet等已有的风格迁移算法存在生成图像笔触丢失、线条灵活度低以及训练时间长等问题,提出一种基于曲线笔触渲染的图像风格迁移算法。方法首先按照自定义的超像素数量将图像前景分割为小区域的子图像,保留更多图像细节,背景分割为较大区域的子图像,再对分割后的每个子区域选取控制点,采用Bezier方程对控制点进行多尺度笔触生成,最后采用风格迁移算法将渲染后的图像与风格图像进行风格迁移。结果与AST(arbitrary style transfer)方法相比,本文方法在欺骗率指标上提升了0.13,测试者欺骗率提升了0.13。与Paint Transformer等基于笔触渲染的算法对比,本文能够在纹理丰富的前景区域生成细粒度笔触,在背景区域生成粗粒度笔触,保存更多的图像细节。结论与GANILLA、AdaIN(adaptive instance normaliza⁃tion)等风格迁移算法相比,本文采用图像分割算法取点生成笔触参数,无需训练,不仅提高了算法效率,而且生成的多风格图像保留风格化图像的笔触绘制痕迹,图像色彩鲜明。Objective The goal of the image style transfer algorithm is to render the content of one image with the style of another image.Image style transfer methods can be divided into traditional and neural style transfer methods.Traditional style transfer methods can be broadly classified to stroke-based rendering(SBR)and image analogy(IA).SBR simulates human drawings with different sizes of strokes.Meanwhile,the main idea of IA is as follows:given a pair of images A(unprocessed source image)and A′(processed image)and the unprocessed image B,the processed image B′is obtained by processing B in the same way as A to A′.Meanwhile,neural style transfer methods can be categorized into slow image reconstruction methods based on online image optimization and fast image reconstruction methods based on offline model optimization.Slow image reconstruction methods optimize the image in the pixel space and minimize the objective function via gradient descent.Using a random noise as the starting image,the pixel values of the noise images are iteratively changed to obtain a target result image.Given that each reconstruction result requires many iterative optimizations in the pixel space,this approach consumes much time and computational resources and requires a high time overhead.In order to speed up this process,fast image reconstruction methods are proposed to train the network in advance in a data-driven man⁃ner using a large amount of data.Given an input,the trained network only needs one forward transmission to output a style transfer image.In recent years,the seminal works on style transfer have focused on building a neural network that can effectively extract the content and style features of an image and then combine these features to generate highly realistic images.However,building a model for each style is inefficient and requires much labor and time resources.One example of this model is the neural style transfer(NST)algorithm,which aims at transferring the texture of the style image to the content image and optim
关 键 词:非真实感渲染 风格迁移 笔触渲染(SBR) BEZIER曲线 超像素分割
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.218.96