检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ibraheem M Alkhawaldeh Ibrahem Albalkhi Abdulqadir Jeprel Naswhan
机构地区:[1]Faculty of Medicine,Mutah University,Karak 61710,Jordan [2]Department of Neuroradiology,Alfaisal University,Great Ormond Street Hospital NHS Foundation Trust,London WC1N 3JH,United Kingdom [3]Nursing for Education and Practice Development,Hamad Medical Corporation,Doha 3050,Qatar
出 处:《World Journal of Methodology》2023年第5期373-378,共6页世界方法学杂志
摘 要:Oversampling is the most utilized approach to deal with class-imbalanced datasets,as seen by the plethora of oversampling methods developed in the last two decades.We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class.These limitations should be considered when using oversampling techniques.We also propose several alternate strategies for dealing with imbalanced data,as well as a future work perspective.
关 键 词:Machine learning Class imbalance OVERFITTING MISDIAGNOSIS
分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.237.210