基于生物脉冲信号的视觉神经编码验证方法研究  

Research on Validation of Visual Neural Encoding Methods Based on Biological Spike Signals

在线阅读下载全文

作  者:张燚钧 刘健 黄铁军[3] ZHANG Yijun;LIU Jian;HUANG Tiejun(PaaS Product Department,China Mobile(Suzhou)Software Technology Co.,Ltd.Suzhou 215004,China;School of Computing,University of Leeds,Leeds LS29JT,United Kingdom;School of Computer Science,Peking University,Beijing 100190,China)

机构地区:[1]中移(苏州)软件技术有限公司PaaS产品部,苏州215004 [2]利兹大学计算学院,利兹LS29JT [3]北京大学计算机学院,北京100190

出  处:《电子与信息学报》2024年第1期317-326,共10页Journal of Electronics & Information Technology

基  金:国家自然科学基金(62176003,62088102,61961130392)。

摘  要:研究界对如何对神经编码模型的性能度量还没有达成一个统一的评价标准。现有的主要编码度量方法是对神经编码模型的编码响应与真实生理响应之间的相似度进行度量。该文提出一种通过神经解码验证神经编码模型性能的方法。基于此方法构建了包括传统编码度量方法和神经解码度量方法的视觉脉冲信号编码验证框架,并基于动态视觉刺激下采集的蝾螈视网膜神经节细胞(RGC)脉冲信号数据集对此框架进行了实验验证。选择了具有动态视觉刺激脉冲响应编码能力的编码模型与性能先进的神经解码模型作为标准度量模型。实验从不同神经编码方式和不同维度全面地对3种神经编码模型的编码性能进行了度量。此外,实验结果表明,脉冲频率编码和脉冲计数编码两种编码方式对脉冲编码性能存在不可忽略的影响。A widely recognized evaluation standard has not been reached on how to evaluate the performance of neural encoding models.Most current neural encoding evaluation methods are based on the measurement of the similarity between the encoded responses from neural encoding models and the real physiological responses.A method to validate the performance of neural encoding models through neural decoding is proposed.Using this method,a visual encoding validation framework including traditional metrics and the proposed method is constructed and experimentally validated based on a physiological dataset of Retinal Ganglion Cell(RGC)spike signals collected from salamanders over dynamic visual stimuli.Three neural encoding models with the capability of encoding the spike responses of dynamic visual stimuli and a neural decoding model with advanced performance are selected as the standard decoding models.The experiments comprehensively measure the neural encoding performance of the three neural encoding models in terms of different neural encoding methods from different perspectives.In addition,the experimental results show that there are non-negligible effects of the two neural encoding methods,i.e.,rate coding and spike count coding,on the neural encoding performance.

关 键 词:神经编码 神经解码 视觉系统 类脑视觉 

分 类 号:TN911.7[电子电信—通信与信息系统] TP39[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象