检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张嘉翔 张凯翔 梁振楠 陈新亮[1,3] 刘泉华[1,2,4] ZHANG Jiaxiang;ZHANG Kaixiang;LIANG Zhennan;CHEN Xinliang;LIU Quanhua(Radar Research Lab,School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China;Chongqing Innovation Center,Beijing Institute of Technology,Chongqing 401120,China;Yangtze Delta Region Academy of Beijing Institute of Technology,Jiaxing 314000,China;Key Laboratory of Electronic and Information Technology in Satellite Navigation(Beijing Institute of Technology),Ministry of Education,Beijing 100081,China)
机构地区:[1]北京理工大学信息与电子学院雷达技术研究所,北京100081 [2]北京理工大学重庆创新中心,重庆401120 [3]北京理工大学长三角研究院(嘉兴),嘉兴314000 [4]卫星导航电子信息技术教育部重点实验室(北京理工大学),北京100081
出 处:《雷达学报(中英文)》2024年第1期227-239,共13页Journal of Radars
基 金:国家自然科学基金(62201048)。
摘 要:自卫式干扰机发射的瞄准干扰使多种基于信号处理的被动干扰抑制方法失效,对现代雷达产生了严重威胁,频率捷变作为一种主动对抗方式为对抗瞄准干扰提供了可能。针对传统随机跳频抗干扰性能不稳定、频点选取自由度有限、策略学习所需时间长等问题,该文面向频率捷变雷达,提出了一种快速自适应跳频策略学习方法。首先设计了一种频点可重复选取的频率捷变波形,为最优解提供了更多选择。在此基础上,通过利用雷达与干扰机持续对抗收集到的数据,基于深度强化学习的探索与反馈机制,不断优化频点选取策略。具体来说,通过将上一时刻雷达频点及当前时刻感知到的干扰频点作为强化学习输入,神经网络智能选取当前时刻各子脉冲频点,并根据目标检测结果以及信干噪比两方面评价抗干扰效能,从而优化策略直至最优。从提高最优策略收敛速度出发,设计的输入状态不依赖历史时间步、引入贪婪策略平衡搜索-利用机制、配合信干噪比提高奖励差异。多组仿真实验结果表明,所提方法能够收敛到最优策略且具备较高的收敛效率。The aiming jamming emitted by self-defense jammers renders various passive anti-jamming measures based on signal processing ineffective,posing severe threats to modern radars.Frequency agility,as an active countermeasure,enables the resistance of aiming jamming.In response to issues such as the unstable antijamming performance of traditional random frequency hopping,limited freedom in frequency selection,and the long time required for strategic learning,the paper proposes a fast-adaptive frequency-hopping strategy for a frequency agile radar.First,a frequency agile waveform with repeatable frequency selection is designed,providing more choices for an optimal solution.Accordingly,using the data collected through continuous confrontation between a radar and a jammer,and the exploration and feedback mechanism of deep reinforcement learning,a frequency-selection strategy is continuously optimized.Specifically,considering radar frequency from the previous time and jamming frequency perceived at the current time as reinforcement learning inputs,the neural network intelligently selects each subpulse frequency at the current time and optimizes the strategy until it is optimal based on the anti-jamming effectiveness evaluated by the target detection result and Signal-to-Jamming-plus-Noise Ratio(SJNR).To improve the convergence speed of the optimal strategy,the designed input state is independent of the historical time step,the introduced greedy strategy balances the search-utilization mechanism,and the SJNR differentiates rewards more.Multiple sets of simulations show that the proposed method can converge to the optimal strategy and has high convergence efficiency.
关 键 词:频率捷变雷达 抗干扰 波形设计 瞄准干扰 深度Q网络
分 类 号:TN958[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249